阿诺德舌取代了忆阻电路中的倍周期级联。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0277414
Silvio L T de Souza, Antonio M Batista, Iberê L Caldas
{"title":"阿诺德舌取代了忆阻电路中的倍周期级联。","authors":"Silvio L T de Souza, Antonio M Batista, Iberê L Caldas","doi":"10.1063/5.0277414","DOIUrl":null,"url":null,"abstract":"<p><p>The memristor, theorized by Leon Chua in 1971, functions as a fundamental electronic component, directly linking electric charge and magnetic flux. As a result of their nonlinear characteristics, memristive circuits generally exhibit chaotic attractors in addition to periodicity. In this work, we consider the Muthuswamy-Chua system, a chaotic circuit consisting of an inductor, a capacitor, and a memristor. In two-dimensional parameter spaces, this system displays periodic shrimp-shaped domains, which are periodic windows surrounded by chaotic regions. Applying a weak harmonic perturbation, we observe the replacement of periodicity by quasiperiodicity, followed by the formation of Arnold tongues (periodic structures) acting as boundaries between quasiperiodic and chaotic regions. Moreover, as an additional result of the perturbation, we identify another interesting feature: the metamorphosis of quasiperiodic shrimp-shaped domains into Arnold tongues. In both instances, Arnold tongues emerge in regions previously dominated by period-doubling cascades under unperturbed conditions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arnold tongues replace period-doubling cascades in a memristor circuit.\",\"authors\":\"Silvio L T de Souza, Antonio M Batista, Iberê L Caldas\",\"doi\":\"10.1063/5.0277414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The memristor, theorized by Leon Chua in 1971, functions as a fundamental electronic component, directly linking electric charge and magnetic flux. As a result of their nonlinear characteristics, memristive circuits generally exhibit chaotic attractors in addition to periodicity. In this work, we consider the Muthuswamy-Chua system, a chaotic circuit consisting of an inductor, a capacitor, and a memristor. In two-dimensional parameter spaces, this system displays periodic shrimp-shaped domains, which are periodic windows surrounded by chaotic regions. Applying a weak harmonic perturbation, we observe the replacement of periodicity by quasiperiodicity, followed by the formation of Arnold tongues (periodic structures) acting as boundaries between quasiperiodic and chaotic regions. Moreover, as an additional result of the perturbation, we identify another interesting feature: the metamorphosis of quasiperiodic shrimp-shaped domains into Arnold tongues. In both instances, Arnold tongues emerge in regions previously dominated by period-doubling cascades under unperturbed conditions.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0277414\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0277414","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

忆阻器是1971年蔡利昂提出的理论,它是一种基本的电子元件,直接连接电荷和磁通量。由于其非线性特性,忆阻电路除了具有周期性外,通常还表现出混沌吸引子。在这项工作中,我们考虑muthuswami - chua系统,这是一个由电感、电容和忆阻器组成的混沌电路。在二维参数空间中,该系统显示出周期性的虾形域,这些域是被混沌区域包围的周期性窗口。应用弱谐波扰动,我们观察到周期性被准周期性所取代,随后形成阿诺德舌(周期结构),作为准周期和混沌区域之间的边界。此外,作为扰动的额外结果,我们确定了另一个有趣的特征:准周期虾形结构域蜕变为阿诺德舌。在这两种情况下,阿诺德舌都出现在以前由周期倍级联在无扰动条件下主导的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arnold tongues replace period-doubling cascades in a memristor circuit.

The memristor, theorized by Leon Chua in 1971, functions as a fundamental electronic component, directly linking electric charge and magnetic flux. As a result of their nonlinear characteristics, memristive circuits generally exhibit chaotic attractors in addition to periodicity. In this work, we consider the Muthuswamy-Chua system, a chaotic circuit consisting of an inductor, a capacitor, and a memristor. In two-dimensional parameter spaces, this system displays periodic shrimp-shaped domains, which are periodic windows surrounded by chaotic regions. Applying a weak harmonic perturbation, we observe the replacement of periodicity by quasiperiodicity, followed by the formation of Arnold tongues (periodic structures) acting as boundaries between quasiperiodic and chaotic regions. Moreover, as an additional result of the perturbation, we identify another interesting feature: the metamorphosis of quasiperiodic shrimp-shaped domains into Arnold tongues. In both instances, Arnold tongues emerge in regions previously dominated by period-doubling cascades under unperturbed conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信