{"title":"从丹参中提取的丹酚酸A被鉴定为致病性沙粒病毒的帽依赖内切酶抑制剂。","authors":"Xiao Gao, Yan Wu, Xiao-Xue He, Guo-Long Liu, Hai-Xia Yang, Jia Lu, Xue-Rui Zhu, Xin-Lan Chen, Chen-Shu Zhao, Hao-Yu Li, Zhong-Fa Zhang, Chan Yang, Shu Shen, Fei Deng, Wei Xu, Shu-Wen Liu, Geng-Fu Xiao, Xiao-Yan Pan","doi":"10.1038/s41401-025-01654-z","DOIUrl":null,"url":null,"abstract":"<p><p>Negative-stranded segmented RNA viruses (NSVs) employ a cap-snatching mechanism for transcription, which makes cap-dependent endonuclease (CEN) an attractive target for drug development. Pathogenic arenaviruses pose a serious threat to humans, yet no approved treatments exist, underscoring the importance of discovering novel compounds targeting arenaviral CENs. Therefore, this study aimed to identify novel CEN inhibitors for arenaviruses and investigate their antiviral mechanisms. A high-throughput screening system based on enzymatic activity of CEN was established for discovering inhibitors of lymphocytic choriomeningitis virus (LCMV). Several hit compounds were screened from a vast natural product library, and then evaluated for both toxicity and inhibition through cellular and animal experiments. One candidate compound was finally identified, and its mechanism of action on CEN was elucidated through simulation analysis and biochemical studies. Moreover, its broad-spectrum effects were investigated among pathogenic arenaviruses as well as representative NSVs. Consequently, salvianolic acid A (SAA) from Salvia miltiorrhiza was identified as a promising compound that effectively inhibited LCMV infection and significantly reduced the viral load via intravenous administration. It was shown to bind to the active pocket of arenaviral CENs while chelating their metal ions through its acid carboxyl group, acting in a substrate-competitive manner. Additionally, SAA exhibited broad-spectrum inhibition of pathogenic arenaviruses as well as representative viruses from the order Bunyavirales. This study identified SAA as a novel CEN inhibitor, particularly for pathogenic arenaviruses, showcasing its promise for antiviral drug development.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salvianolic acid A from Salvia miltiorrhiza identified as a cap-dependent endonuclease inhibitor for pathogenic arenaviruses.\",\"authors\":\"Xiao Gao, Yan Wu, Xiao-Xue He, Guo-Long Liu, Hai-Xia Yang, Jia Lu, Xue-Rui Zhu, Xin-Lan Chen, Chen-Shu Zhao, Hao-Yu Li, Zhong-Fa Zhang, Chan Yang, Shu Shen, Fei Deng, Wei Xu, Shu-Wen Liu, Geng-Fu Xiao, Xiao-Yan Pan\",\"doi\":\"10.1038/s41401-025-01654-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Negative-stranded segmented RNA viruses (NSVs) employ a cap-snatching mechanism for transcription, which makes cap-dependent endonuclease (CEN) an attractive target for drug development. Pathogenic arenaviruses pose a serious threat to humans, yet no approved treatments exist, underscoring the importance of discovering novel compounds targeting arenaviral CENs. Therefore, this study aimed to identify novel CEN inhibitors for arenaviruses and investigate their antiviral mechanisms. A high-throughput screening system based on enzymatic activity of CEN was established for discovering inhibitors of lymphocytic choriomeningitis virus (LCMV). Several hit compounds were screened from a vast natural product library, and then evaluated for both toxicity and inhibition through cellular and animal experiments. One candidate compound was finally identified, and its mechanism of action on CEN was elucidated through simulation analysis and biochemical studies. Moreover, its broad-spectrum effects were investigated among pathogenic arenaviruses as well as representative NSVs. Consequently, salvianolic acid A (SAA) from Salvia miltiorrhiza was identified as a promising compound that effectively inhibited LCMV infection and significantly reduced the viral load via intravenous administration. It was shown to bind to the active pocket of arenaviral CENs while chelating their metal ions through its acid carboxyl group, acting in a substrate-competitive manner. Additionally, SAA exhibited broad-spectrum inhibition of pathogenic arenaviruses as well as representative viruses from the order Bunyavirales. This study identified SAA as a novel CEN inhibitor, particularly for pathogenic arenaviruses, showcasing its promise for antiviral drug development.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01654-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01654-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Salvianolic acid A from Salvia miltiorrhiza identified as a cap-dependent endonuclease inhibitor for pathogenic arenaviruses.
Negative-stranded segmented RNA viruses (NSVs) employ a cap-snatching mechanism for transcription, which makes cap-dependent endonuclease (CEN) an attractive target for drug development. Pathogenic arenaviruses pose a serious threat to humans, yet no approved treatments exist, underscoring the importance of discovering novel compounds targeting arenaviral CENs. Therefore, this study aimed to identify novel CEN inhibitors for arenaviruses and investigate their antiviral mechanisms. A high-throughput screening system based on enzymatic activity of CEN was established for discovering inhibitors of lymphocytic choriomeningitis virus (LCMV). Several hit compounds were screened from a vast natural product library, and then evaluated for both toxicity and inhibition through cellular and animal experiments. One candidate compound was finally identified, and its mechanism of action on CEN was elucidated through simulation analysis and biochemical studies. Moreover, its broad-spectrum effects were investigated among pathogenic arenaviruses as well as representative NSVs. Consequently, salvianolic acid A (SAA) from Salvia miltiorrhiza was identified as a promising compound that effectively inhibited LCMV infection and significantly reduced the viral load via intravenous administration. It was shown to bind to the active pocket of arenaviral CENs while chelating their metal ions through its acid carboxyl group, acting in a substrate-competitive manner. Additionally, SAA exhibited broad-spectrum inhibition of pathogenic arenaviruses as well as representative viruses from the order Bunyavirales. This study identified SAA as a novel CEN inhibitor, particularly for pathogenic arenaviruses, showcasing its promise for antiviral drug development.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.