{"title":"使用纤维素/双材料复合材料达到超低磨损。","authors":"Xuan Yin, Dingyao Zhang, Bing Zhang","doi":"10.1039/d5cp00527b","DOIUrl":null,"url":null,"abstract":"<p><p>The development of environmentally friendly solid lubricants with exceptional wear resistance is imperative to address the escalating environmental concerns and performance limitations of conventional lubricants in demanding tribological applications. This study systematically investigated the wear resistance of hydroxypropyl methylcellulose (HPMC)/tungsten disulfide (WS<sub>2</sub>)/graphene composites under normal applied loads (2 and 4 N) and varying solid lubricant contents (stoichiometric ratios of 0.2 referred to as CWG-0.2 and 10 referred to as CWG-10). Quantitative tribological tests revealed that the wear rate of HPMC composites exhibited distinct load dependence at fixed lubricant concentrations. Notably, CWG-0.2 and CWG-10 composites achieved an ultra-low wear rate below 10<sup>-10</sup> mm<sup>3</sup>, representing an approximately 95% reduction compared to pristine HPMC (10<sup>-8</sup> mm<sup>3</sup>). Surface characterization demonstrated that localized carbon phase clusters and interconnected carbon skeleton chains governed the ultra-low wear transition. Prolonged sliding (>10 000 cycles) induced the formation of a 10-50 nm-thick transfer film comprising WS<sub>2</sub> nanoflakes and a hybrid amorphous phase (C-O-W-S), as confirmed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The exceptional performance, quantified through rigorous parametric analysis, positions HPMC composites as sustainable solid lubricants for precision machinery, aerospace bearings, and biodegradable micro-electromechanical systems requiring eco-friendly superlubricity.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" ","pages":"19960-19969"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arriving at ultralow wear using cellulose/two-material composites.\",\"authors\":\"Xuan Yin, Dingyao Zhang, Bing Zhang\",\"doi\":\"10.1039/d5cp00527b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of environmentally friendly solid lubricants with exceptional wear resistance is imperative to address the escalating environmental concerns and performance limitations of conventional lubricants in demanding tribological applications. This study systematically investigated the wear resistance of hydroxypropyl methylcellulose (HPMC)/tungsten disulfide (WS<sub>2</sub>)/graphene composites under normal applied loads (2 and 4 N) and varying solid lubricant contents (stoichiometric ratios of 0.2 referred to as CWG-0.2 and 10 referred to as CWG-10). Quantitative tribological tests revealed that the wear rate of HPMC composites exhibited distinct load dependence at fixed lubricant concentrations. Notably, CWG-0.2 and CWG-10 composites achieved an ultra-low wear rate below 10<sup>-10</sup> mm<sup>3</sup>, representing an approximately 95% reduction compared to pristine HPMC (10<sup>-8</sup> mm<sup>3</sup>). Surface characterization demonstrated that localized carbon phase clusters and interconnected carbon skeleton chains governed the ultra-low wear transition. Prolonged sliding (>10 000 cycles) induced the formation of a 10-50 nm-thick transfer film comprising WS<sub>2</sub> nanoflakes and a hybrid amorphous phase (C-O-W-S), as confirmed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The exceptional performance, quantified through rigorous parametric analysis, positions HPMC composites as sustainable solid lubricants for precision machinery, aerospace bearings, and biodegradable micro-electromechanical systems requiring eco-friendly superlubricity.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" \",\"pages\":\"19960-19969\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp00527b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00527b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Arriving at ultralow wear using cellulose/two-material composites.
The development of environmentally friendly solid lubricants with exceptional wear resistance is imperative to address the escalating environmental concerns and performance limitations of conventional lubricants in demanding tribological applications. This study systematically investigated the wear resistance of hydroxypropyl methylcellulose (HPMC)/tungsten disulfide (WS2)/graphene composites under normal applied loads (2 and 4 N) and varying solid lubricant contents (stoichiometric ratios of 0.2 referred to as CWG-0.2 and 10 referred to as CWG-10). Quantitative tribological tests revealed that the wear rate of HPMC composites exhibited distinct load dependence at fixed lubricant concentrations. Notably, CWG-0.2 and CWG-10 composites achieved an ultra-low wear rate below 10-10 mm3, representing an approximately 95% reduction compared to pristine HPMC (10-8 mm3). Surface characterization demonstrated that localized carbon phase clusters and interconnected carbon skeleton chains governed the ultra-low wear transition. Prolonged sliding (>10 000 cycles) induced the formation of a 10-50 nm-thick transfer film comprising WS2 nanoflakes and a hybrid amorphous phase (C-O-W-S), as confirmed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The exceptional performance, quantified through rigorous parametric analysis, positions HPMC composites as sustainable solid lubricants for precision machinery, aerospace bearings, and biodegradable micro-electromechanical systems requiring eco-friendly superlubricity.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.