Nazreen V. M. Abdul Muthaliff, Nur Eka Fitriani, Derek Smith, Jing Sen Ong, Lay Kien Yang, Coleen Toledo Busran, Aaron Thong, Prakash Arumugam and Naazneen Sofeo*,
{"title":"二酰基甘油酰基转移酶底物结合袋的突变改变酵母中三酰基甘油酯的脂肪酸组成。","authors":"Nazreen V. M. Abdul Muthaliff, Nur Eka Fitriani, Derek Smith, Jing Sen Ong, Lay Kien Yang, Coleen Toledo Busran, Aaron Thong, Prakash Arumugam and Naazneen Sofeo*, ","doi":"10.1021/acssynbio.5c00143","DOIUrl":null,"url":null,"abstract":"<p >Triacylglycerols (TAGs) are the main components of food oils and fats. The fatty acid composition of TAGs varies for different oils and fats. Specific enzymes sequentially add three fatty acids to the glycerol backbone of TAGs. Diacylglycerol acyltransferase or DGAT adds the third and ultimate fatty acid to the glycerol backbone at the <i>sn-3</i> position. In this study, we characterized the substrate-binding pocket of enzyme DGAT1 from <i>Arabidopsis thaliana</i> through heterologous expression in the DGAT mutant of <i>Saccharomyces cerevisiae</i>. We performed site saturation mutagenesis on 10 amino acid residues in the catalytic site and examined their effects on the fatty acid profile of yeast cells. Our results indicate that mutations F373G, T240I, M289F, and V248I impact the yeast TAG profile either in terms of the total saturation level or the carbon chain length of the fatty acids, suggesting that they change the DGAT’s substrate preference. This offers insights into crucial amino acid residues in the DGAT binding pocket which can be engineered for fine tuning the lipid profile. In summary, we have harnessed the power of enzyme engineering to modify the fatty acyl makeup of triglycerides and created a sustainable platform for the production of customized alternative lipids.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 9","pages":"3401–3413"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutations in the Substrate-Binding Pocket of DiacylGlycerol Acyltransferase Alter the Fatty Acid Composition of Triacylglycerides in Yeast\",\"authors\":\"Nazreen V. M. Abdul Muthaliff, Nur Eka Fitriani, Derek Smith, Jing Sen Ong, Lay Kien Yang, Coleen Toledo Busran, Aaron Thong, Prakash Arumugam and Naazneen Sofeo*, \",\"doi\":\"10.1021/acssynbio.5c00143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Triacylglycerols (TAGs) are the main components of food oils and fats. The fatty acid composition of TAGs varies for different oils and fats. Specific enzymes sequentially add three fatty acids to the glycerol backbone of TAGs. Diacylglycerol acyltransferase or DGAT adds the third and ultimate fatty acid to the glycerol backbone at the <i>sn-3</i> position. In this study, we characterized the substrate-binding pocket of enzyme DGAT1 from <i>Arabidopsis thaliana</i> through heterologous expression in the DGAT mutant of <i>Saccharomyces cerevisiae</i>. We performed site saturation mutagenesis on 10 amino acid residues in the catalytic site and examined their effects on the fatty acid profile of yeast cells. Our results indicate that mutations F373G, T240I, M289F, and V248I impact the yeast TAG profile either in terms of the total saturation level or the carbon chain length of the fatty acids, suggesting that they change the DGAT’s substrate preference. This offers insights into crucial amino acid residues in the DGAT binding pocket which can be engineered for fine tuning the lipid profile. In summary, we have harnessed the power of enzyme engineering to modify the fatty acyl makeup of triglycerides and created a sustainable platform for the production of customized alternative lipids.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"14 9\",\"pages\":\"3401–3413\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.5c00143\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00143","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Mutations in the Substrate-Binding Pocket of DiacylGlycerol Acyltransferase Alter the Fatty Acid Composition of Triacylglycerides in Yeast
Triacylglycerols (TAGs) are the main components of food oils and fats. The fatty acid composition of TAGs varies for different oils and fats. Specific enzymes sequentially add three fatty acids to the glycerol backbone of TAGs. Diacylglycerol acyltransferase or DGAT adds the third and ultimate fatty acid to the glycerol backbone at the sn-3 position. In this study, we characterized the substrate-binding pocket of enzyme DGAT1 from Arabidopsis thaliana through heterologous expression in the DGAT mutant of Saccharomyces cerevisiae. We performed site saturation mutagenesis on 10 amino acid residues in the catalytic site and examined their effects on the fatty acid profile of yeast cells. Our results indicate that mutations F373G, T240I, M289F, and V248I impact the yeast TAG profile either in terms of the total saturation level or the carbon chain length of the fatty acids, suggesting that they change the DGAT’s substrate preference. This offers insights into crucial amino acid residues in the DGAT binding pocket which can be engineered for fine tuning the lipid profile. In summary, we have harnessed the power of enzyme engineering to modify the fatty acyl makeup of triglycerides and created a sustainable platform for the production of customized alternative lipids.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.