高斯统计场论中的相对熵和互信息

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Markus Schröfl, Stefan Floerchinger
{"title":"高斯统计场论中的相对熵和互信息","authors":"Markus Schröfl,&nbsp;Stefan Floerchinger","doi":"10.1007/s00023-024-01522-2","DOIUrl":null,"url":null,"abstract":"<div><p>Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on <i>d</i>, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in <span>\\(\\mathbb {R}^d\\)</span> is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 9","pages":"3233 - 3319"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01522-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Relative Entropy and Mutual Information in Gaussian Statistical Field Theory\",\"authors\":\"Markus Schröfl,&nbsp;Stefan Floerchinger\",\"doi\":\"10.1007/s00023-024-01522-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on <i>d</i>, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in <span>\\\\(\\\\mathbb {R}^d\\\\)</span> is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 9\",\"pages\":\"3233 - 3319\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-024-01522-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01522-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01522-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

相对熵是连续统中两种统计场论之间差异的有力度量。本文研究了有限体积内不同质量和边界条件下高斯标量场理论之间的相对熵。我们证明了相对熵主要取决于欧几里得空间的维数d。进一步,我们证明了\(\mathbb {R}^d\)中两个不相交区域之间的互信息是有限的,如果两个区域被有限距离隔开并且满足面积定律。然后我们构造了一个互信息为无限的“接触”区域的例子。我们认为标量场理论中互信息的性质可以用这些理论的马尔可夫性质来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Entropy and Mutual Information in Gaussian Statistical Field Theory

Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on d, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in \(\mathbb {R}^d\) is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信