同位素组成、晶粒尺寸、晶间边界热阻和温度对金刚石纳米多晶和纳米复合材料导热性能的影响

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. І. Kushch, O. P. Podoba, S. V. Shmegera, O. O. Bochecka
{"title":"同位素组成、晶粒尺寸、晶间边界热阻和温度对金刚石纳米多晶和纳米复合材料导热性能的影响","authors":"V. І. Kushch,&nbsp;O. P. Podoba,&nbsp;S. V. Shmegera,&nbsp;O. O. Bochecka","doi":"10.3103/S1063457625040057","DOIUrl":null,"url":null,"abstract":"<p>This study presents a review and comparative analysis of existing approaches, methodologies, and findings related to the thermal conductivity of nanostructured solids. The authors developed theoretical models to predict the effective thermal conductivity of nanopolycrystals and nanocomposites with imperfect grain boundaries, incorporating the effects of isotopic composition, crystal size, interfacial thermal resistance, and temperature. These models rely on the current understanding of the physical mechanisms of lattice heat transfer in covalent crystals and phonon scattering at structural defects. The developed theory offers a straightforward method for estimating the thermal conductivity of nanocomposites and provides insight into the dominant factors governing heat transfer in crystalline structures at the nanoscale. Comparison with experimental data confirms the model’s validity and its applicability to the prediction of thermal conductivity in real-world nanopolycrystalline and nanocomposite materials, including those containing diamond.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"47 4","pages":"249 - 260"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Isotopic Composition, Crystal Size, Intergranular Boundary Thermal Resistance, and Temperature on the Thermal Conductivity of Diamond Nanopolycrystals and Nanocomposites\",\"authors\":\"V. І. Kushch,&nbsp;O. P. Podoba,&nbsp;S. V. Shmegera,&nbsp;O. O. Bochecka\",\"doi\":\"10.3103/S1063457625040057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a review and comparative analysis of existing approaches, methodologies, and findings related to the thermal conductivity of nanostructured solids. The authors developed theoretical models to predict the effective thermal conductivity of nanopolycrystals and nanocomposites with imperfect grain boundaries, incorporating the effects of isotopic composition, crystal size, interfacial thermal resistance, and temperature. These models rely on the current understanding of the physical mechanisms of lattice heat transfer in covalent crystals and phonon scattering at structural defects. The developed theory offers a straightforward method for estimating the thermal conductivity of nanocomposites and provides insight into the dominant factors governing heat transfer in crystalline structures at the nanoscale. Comparison with experimental data confirms the model’s validity and its applicability to the prediction of thermal conductivity in real-world nanopolycrystalline and nanocomposite materials, including those containing diamond.</p>\",\"PeriodicalId\":670,\"journal\":{\"name\":\"Journal of Superhard Materials\",\"volume\":\"47 4\",\"pages\":\"249 - 260\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superhard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063457625040057\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457625040057","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究对纳米结构固体的导热性的现有方法、方法和发现进行了回顾和比较分析。作者建立了理论模型来预测具有不完美晶界的纳米多晶和纳米复合材料的有效导热系数,考虑了同位素组成、晶体尺寸、界面热阻和温度的影响。这些模型依赖于目前对共价晶体中晶格传热和结构缺陷处声子散射的物理机制的理解。该理论为估计纳米复合材料的导热性提供了一种直接的方法,并提供了对纳米尺度晶体结构中控制传热的主要因素的见解。通过与实验数据的比较,证实了该模型的有效性和对实际纳米多晶和纳米复合材料(包括含金刚石材料)导热系数预测的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Isotopic Composition, Crystal Size, Intergranular Boundary Thermal Resistance, and Temperature on the Thermal Conductivity of Diamond Nanopolycrystals and Nanocomposites

Effect of Isotopic Composition, Crystal Size, Intergranular Boundary Thermal Resistance, and Temperature on the Thermal Conductivity of Diamond Nanopolycrystals and Nanocomposites

Effect of Isotopic Composition, Crystal Size, Intergranular Boundary Thermal Resistance, and Temperature on the Thermal Conductivity of Diamond Nanopolycrystals and Nanocomposites

This study presents a review and comparative analysis of existing approaches, methodologies, and findings related to the thermal conductivity of nanostructured solids. The authors developed theoretical models to predict the effective thermal conductivity of nanopolycrystals and nanocomposites with imperfect grain boundaries, incorporating the effects of isotopic composition, crystal size, interfacial thermal resistance, and temperature. These models rely on the current understanding of the physical mechanisms of lattice heat transfer in covalent crystals and phonon scattering at structural defects. The developed theory offers a straightforward method for estimating the thermal conductivity of nanocomposites and provides insight into the dominant factors governing heat transfer in crystalline structures at the nanoscale. Comparison with experimental data confirms the model’s validity and its applicability to the prediction of thermal conductivity in real-world nanopolycrystalline and nanocomposite materials, including those containing diamond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superhard Materials
Journal of Superhard Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
66.70%
发文量
26
审稿时长
2 months
期刊介绍: Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信