{"title":"静波方程解的渐近性","authors":"Andrés Franco Grisales","doi":"10.1007/s00023-024-01504-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the asymptotics of solutions to a particular class of systems of linear wave equations, namely, of silent equations. Here, the asymptotics refer to the behavior of the solutions near a cosmological singularity, or near infinity in the expanding direction. Leading-order asymptotics for solutions of silent equations were already obtained by Ringström (Astérisque 420, 2020). Here, we improve upon Ringström’s result, by obtaining asymptotic estimates of all orders for the solutions, and showing that solutions are uniquely determined by the asymptotic data contained in the estimates. As an application, we then study solutions to the source free Maxwell’s equations in Kasner spacetimes near the initial singularity. Our results allow us to obtain an asymptotic expansion for the potential of the electromagnetic field, and to show that the energy density of generic solutions blows up along generic timelike geodesics when approaching the singularity. The asymptotics we study correspond to the heuristics of the BKL conjecture, where the coefficients of the spatial derivative terms of the equations are expected to be small, and thus these terms are neglected in order to obtain the asymptotics.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 9","pages":"3383 - 3440"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01504-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Solutions to Silent Wave Equations\",\"authors\":\"Andrés Franco Grisales\",\"doi\":\"10.1007/s00023-024-01504-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the asymptotics of solutions to a particular class of systems of linear wave equations, namely, of silent equations. Here, the asymptotics refer to the behavior of the solutions near a cosmological singularity, or near infinity in the expanding direction. Leading-order asymptotics for solutions of silent equations were already obtained by Ringström (Astérisque 420, 2020). Here, we improve upon Ringström’s result, by obtaining asymptotic estimates of all orders for the solutions, and showing that solutions are uniquely determined by the asymptotic data contained in the estimates. As an application, we then study solutions to the source free Maxwell’s equations in Kasner spacetimes near the initial singularity. Our results allow us to obtain an asymptotic expansion for the potential of the electromagnetic field, and to show that the energy density of generic solutions blows up along generic timelike geodesics when approaching the singularity. The asymptotics we study correspond to the heuristics of the BKL conjecture, where the coefficients of the spatial derivative terms of the equations are expected to be small, and thus these terms are neglected in order to obtain the asymptotics.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 9\",\"pages\":\"3383 - 3440\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-024-01504-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01504-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01504-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We study the asymptotics of solutions to a particular class of systems of linear wave equations, namely, of silent equations. Here, the asymptotics refer to the behavior of the solutions near a cosmological singularity, or near infinity in the expanding direction. Leading-order asymptotics for solutions of silent equations were already obtained by Ringström (Astérisque 420, 2020). Here, we improve upon Ringström’s result, by obtaining asymptotic estimates of all orders for the solutions, and showing that solutions are uniquely determined by the asymptotic data contained in the estimates. As an application, we then study solutions to the source free Maxwell’s equations in Kasner spacetimes near the initial singularity. Our results allow us to obtain an asymptotic expansion for the potential of the electromagnetic field, and to show that the energy density of generic solutions blows up along generic timelike geodesics when approaching the singularity. The asymptotics we study correspond to the heuristics of the BKL conjecture, where the coefficients of the spatial derivative terms of the equations are expected to be small, and thus these terms are neglected in order to obtain the asymptotics.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.