静波方程解的渐近性

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Andrés Franco Grisales
{"title":"静波方程解的渐近性","authors":"Andrés Franco Grisales","doi":"10.1007/s00023-024-01504-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the asymptotics of solutions to a particular class of systems of linear wave equations, namely, of silent equations. Here, the asymptotics refer to the behavior of the solutions near a cosmological singularity, or near infinity in the expanding direction. Leading-order asymptotics for solutions of silent equations were already obtained by Ringström (Astérisque 420, 2020). Here, we improve upon Ringström’s result, by obtaining asymptotic estimates of all orders for the solutions, and showing that solutions are uniquely determined by the asymptotic data contained in the estimates. As an application, we then study solutions to the source free Maxwell’s equations in Kasner spacetimes near the initial singularity. Our results allow us to obtain an asymptotic expansion for the potential of the electromagnetic field, and to show that the energy density of generic solutions blows up along generic timelike geodesics when approaching the singularity. The asymptotics we study correspond to the heuristics of the BKL conjecture, where the coefficients of the spatial derivative terms of the equations are expected to be small, and thus these terms are neglected in order to obtain the asymptotics.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 9","pages":"3383 - 3440"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01504-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Solutions to Silent Wave Equations\",\"authors\":\"Andrés Franco Grisales\",\"doi\":\"10.1007/s00023-024-01504-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the asymptotics of solutions to a particular class of systems of linear wave equations, namely, of silent equations. Here, the asymptotics refer to the behavior of the solutions near a cosmological singularity, or near infinity in the expanding direction. Leading-order asymptotics for solutions of silent equations were already obtained by Ringström (Astérisque 420, 2020). Here, we improve upon Ringström’s result, by obtaining asymptotic estimates of all orders for the solutions, and showing that solutions are uniquely determined by the asymptotic data contained in the estimates. As an application, we then study solutions to the source free Maxwell’s equations in Kasner spacetimes near the initial singularity. Our results allow us to obtain an asymptotic expansion for the potential of the electromagnetic field, and to show that the energy density of generic solutions blows up along generic timelike geodesics when approaching the singularity. The asymptotics we study correspond to the heuristics of the BKL conjecture, where the coefficients of the spatial derivative terms of the equations are expected to be small, and thus these terms are neglected in order to obtain the asymptotics.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 9\",\"pages\":\"3383 - 3440\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-024-01504-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01504-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01504-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类特殊的线性波动方程系统,即无噪声方程解的渐近性。这里,渐近性指的是解在宇宙奇点附近的行为,或在膨胀方向上接近无穷大的行为。无噪声方程解的首阶渐近性已经通过Ringström (ast risque 420, 2020)得到。在这里,我们改进了Ringström的结果,得到了解的所有阶的渐近估计,并证明解是由估计中包含的渐近数据唯一确定的。作为应用,我们研究了Kasner时空中初始奇点附近无源麦克斯韦方程组的解。我们的结果允许我们得到电磁场势的渐近展开式,并表明当接近奇点时,一般解的能量密度沿着一般类时测地线爆炸。我们研究的渐近性对应于BKL猜想的启发式,其中方程的空间导数项的系数被期望很小,因此这些项被忽略以获得渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of Solutions to Silent Wave Equations

We study the asymptotics of solutions to a particular class of systems of linear wave equations, namely, of silent equations. Here, the asymptotics refer to the behavior of the solutions near a cosmological singularity, or near infinity in the expanding direction. Leading-order asymptotics for solutions of silent equations were already obtained by Ringström (Astérisque 420, 2020). Here, we improve upon Ringström’s result, by obtaining asymptotic estimates of all orders for the solutions, and showing that solutions are uniquely determined by the asymptotic data contained in the estimates. As an application, we then study solutions to the source free Maxwell’s equations in Kasner spacetimes near the initial singularity. Our results allow us to obtain an asymptotic expansion for the potential of the electromagnetic field, and to show that the energy density of generic solutions blows up along generic timelike geodesics when approaching the singularity. The asymptotics we study correspond to the heuristics of the BKL conjecture, where the coefficients of the spatial derivative terms of the equations are expected to be small, and thus these terms are neglected in order to obtain the asymptotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信