稻壳灰负载磷钨酸催化合成乙酸正丁酯

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
Vishnu A. Gite, Alok Ranjan, Ratna S. Katiyar
{"title":"稻壳灰负载磷钨酸催化合成乙酸正丁酯","authors":"Vishnu A. Gite,&nbsp;Alok Ranjan,&nbsp;Ratna S. Katiyar","doi":"10.1134/S0023158424602316","DOIUrl":null,"url":null,"abstract":"<p>Rice husk is a byproduct of rice milling, containing a high percentage of silica (silicon dioxide). Rice husk ash (RHA), produced from rice husk, was used as a support for 12-phosphotungstic acid. It is a practical and potentially beneficial approach in catalysis. A series of supported catalysts with 12-phosphotungstic acid (20–40 wt % of H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>), immobilized on rice husk ash via impregnation using the initial moisture content method, were prepared. The catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and scanning electron microscopy (SEM) for annotation of the catalytic behavior. The catalytic activity of the H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>/RHA catalyst was evaluated in the synthesis of <i>n</i>-butyl acetate. The catalyst with 30 wt % H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>, immobilized on rice husk ash, demonstrated the highest conversion of acetic acid. The reactions were carried out in a batch reactor. The highest conversion of 84.2% was attained under optimal conditions: temperature of 120°C, an acid-to-alcohol mole ratio of 1 : 2, agitation at 400 rpm, and catalyst loading of 1.5 wt % over 180 min. Additionally, the catalyst was also assessed to determine its stability and reusability.</p>","PeriodicalId":682,"journal":{"name":"Kinetics and Catalysis","volume":"66 3","pages":"320 - 329"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphotungstic Acid Supported on Rice Husk Ash Catalyzed Synthesis of n-Butyl Acetate\",\"authors\":\"Vishnu A. Gite,&nbsp;Alok Ranjan,&nbsp;Ratna S. Katiyar\",\"doi\":\"10.1134/S0023158424602316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rice husk is a byproduct of rice milling, containing a high percentage of silica (silicon dioxide). Rice husk ash (RHA), produced from rice husk, was used as a support for 12-phosphotungstic acid. It is a practical and potentially beneficial approach in catalysis. A series of supported catalysts with 12-phosphotungstic acid (20–40 wt % of H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>), immobilized on rice husk ash via impregnation using the initial moisture content method, were prepared. The catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and scanning electron microscopy (SEM) for annotation of the catalytic behavior. The catalytic activity of the H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>/RHA catalyst was evaluated in the synthesis of <i>n</i>-butyl acetate. The catalyst with 30 wt % H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>, immobilized on rice husk ash, demonstrated the highest conversion of acetic acid. The reactions were carried out in a batch reactor. The highest conversion of 84.2% was attained under optimal conditions: temperature of 120°C, an acid-to-alcohol mole ratio of 1 : 2, agitation at 400 rpm, and catalyst loading of 1.5 wt % over 180 min. Additionally, the catalyst was also assessed to determine its stability and reusability.</p>\",\"PeriodicalId\":682,\"journal\":{\"name\":\"Kinetics and Catalysis\",\"volume\":\"66 3\",\"pages\":\"320 - 329\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetics and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0023158424602316\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetics and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0023158424602316","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

稻壳是碾米的副产品,含有高比例的二氧化硅。以稻壳为原料制备稻壳灰(RHA)作为12-磷钨酸的载体。这是一种实用的和潜在的有益的催化方法。采用初始水分法浸渍稻壳灰,制备了12-磷钨酸(H3PW12O40质量分数为20 ~ 40 wt %)负载型催化剂。采用傅里叶变换红外光谱(FT-IR)、x射线衍射(XRD)、brunauer - emmet - teller (BET)分析和扫描电镜(SEM)对催化剂的催化行为进行了表征。对H3PW12O40/RHA催化剂在合成乙酸正丁酯中的催化活性进行了评价。H3PW12O40质量分数为30%,固定在稻壳灰上,醋酸转化率最高。反应在间歇式反应器中进行。在温度为120℃,酸醇摩尔比为1:2,搅拌速度为400转/分,催化剂负载为1.5 wt %, 180 min的最佳条件下,转化率最高可达84.2%。此外,还评估了催化剂的稳定性和可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phosphotungstic Acid Supported on Rice Husk Ash Catalyzed Synthesis of n-Butyl Acetate

Phosphotungstic Acid Supported on Rice Husk Ash Catalyzed Synthesis of n-Butyl Acetate

Phosphotungstic Acid Supported on Rice Husk Ash Catalyzed Synthesis of n-Butyl Acetate

Rice husk is a byproduct of rice milling, containing a high percentage of silica (silicon dioxide). Rice husk ash (RHA), produced from rice husk, was used as a support for 12-phosphotungstic acid. It is a practical and potentially beneficial approach in catalysis. A series of supported catalysts with 12-phosphotungstic acid (20–40 wt % of H3PW12O40), immobilized on rice husk ash via impregnation using the initial moisture content method, were prepared. The catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and scanning electron microscopy (SEM) for annotation of the catalytic behavior. The catalytic activity of the H3PW12O40/RHA catalyst was evaluated in the synthesis of n-butyl acetate. The catalyst with 30 wt % H3PW12O40, immobilized on rice husk ash, demonstrated the highest conversion of acetic acid. The reactions were carried out in a batch reactor. The highest conversion of 84.2% was attained under optimal conditions: temperature of 120°C, an acid-to-alcohol mole ratio of 1 : 2, agitation at 400 rpm, and catalyst loading of 1.5 wt % over 180 min. Additionally, the catalyst was also assessed to determine its stability and reusability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kinetics and Catalysis
Kinetics and Catalysis 化学-物理化学
CiteScore
2.10
自引率
27.30%
发文量
64
审稿时长
6-12 weeks
期刊介绍: Kinetics and Catalysis Russian is a periodical that publishes theoretical and experimental works on homogeneous and heterogeneous kinetics and catalysis. Other topics include the mechanism and kinetics of noncatalytic processes in gaseous, liquid, and solid phases, quantum chemical calculations in kinetics and catalysis, methods of studying catalytic processes and catalysts, the chemistry of catalysts and adsorbent surfaces, the structure and physicochemical properties of catalysts, preparation and poisoning of catalysts, macrokinetics, and computer simulations in catalysis. The journal also publishes review articles on contemporary problems in kinetics and catalysis. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信