{"title":"FinLLMs:一个使用大型语言模型生成金融推理数据集的框架","authors":"Ziqiang Yuan;Kaiyuan Wang;Shoutai Zhu;Ye Yuan;Jingya Zhou;Yanlin Zhu;Wenqi Wei","doi":"10.1109/TBDATA.2024.3524083","DOIUrl":null,"url":null,"abstract":"Large Language models (LLMs) usually rely on extensive training datasets. In the financial domain, creating numerical reasoning datasets that include a mix of tables and long text often involves substantial manual annotation expenses. To address the limited data resources and reduce the annotation cost, we introduce FinLLMs, a method for generating financial question-answering (QA) data based on common financial formulas using LLMs. First, we compile a list of common financial formulas and construct a graph based on the variables these formulas employ. We then augment the formula set by combining those that share identical variables as new elements. Specifically, we explore formulas obtained by manual annotation and merge those formulas with shared variables by traversing the constructed graph. Finally, utilizing LLMs, we generate financial QA data that encompasses both tabular information and long textual content, building on the collected formula set. Our experiments demonstrate that the synthetic data generated by FinLLMs effectively enhances the performance of various numerical reasoning models in the financial domain, including both pre-trained language models (PLMs) and fine-tuned LLMs. This performance surpasses that of two established benchmark financial QA datasets.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 5","pages":"2264-2277"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FinLLMs: A Framework for Financial Reasoning Dataset Generation With Large Language Models\",\"authors\":\"Ziqiang Yuan;Kaiyuan Wang;Shoutai Zhu;Ye Yuan;Jingya Zhou;Yanlin Zhu;Wenqi Wei\",\"doi\":\"10.1109/TBDATA.2024.3524083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language models (LLMs) usually rely on extensive training datasets. In the financial domain, creating numerical reasoning datasets that include a mix of tables and long text often involves substantial manual annotation expenses. To address the limited data resources and reduce the annotation cost, we introduce FinLLMs, a method for generating financial question-answering (QA) data based on common financial formulas using LLMs. First, we compile a list of common financial formulas and construct a graph based on the variables these formulas employ. We then augment the formula set by combining those that share identical variables as new elements. Specifically, we explore formulas obtained by manual annotation and merge those formulas with shared variables by traversing the constructed graph. Finally, utilizing LLMs, we generate financial QA data that encompasses both tabular information and long textual content, building on the collected formula set. Our experiments demonstrate that the synthetic data generated by FinLLMs effectively enhances the performance of various numerical reasoning models in the financial domain, including both pre-trained language models (PLMs) and fine-tuned LLMs. This performance surpasses that of two established benchmark financial QA datasets.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 5\",\"pages\":\"2264-2277\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818583/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818583/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
FinLLMs: A Framework for Financial Reasoning Dataset Generation With Large Language Models
Large Language models (LLMs) usually rely on extensive training datasets. In the financial domain, creating numerical reasoning datasets that include a mix of tables and long text often involves substantial manual annotation expenses. To address the limited data resources and reduce the annotation cost, we introduce FinLLMs, a method for generating financial question-answering (QA) data based on common financial formulas using LLMs. First, we compile a list of common financial formulas and construct a graph based on the variables these formulas employ. We then augment the formula set by combining those that share identical variables as new elements. Specifically, we explore formulas obtained by manual annotation and merge those formulas with shared variables by traversing the constructed graph. Finally, utilizing LLMs, we generate financial QA data that encompasses both tabular information and long textual content, building on the collected formula set. Our experiments demonstrate that the synthetic data generated by FinLLMs effectively enhances the performance of various numerical reasoning models in the financial domain, including both pre-trained language models (PLMs) and fine-tuned LLMs. This performance surpasses that of two established benchmark financial QA datasets.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.