自旋变量Grover自适应搜索

IF 4.6
Shintaro Fujiwara;Naoki Ishikawa
{"title":"自旋变量Grover自适应搜索","authors":"Shintaro Fujiwara;Naoki Ishikawa","doi":"10.1109/TQE.2025.3595910","DOIUrl":null,"url":null,"abstract":"This article presents a novel approach to Grover adaptive search (GAS) for a combinatorial optimization problem whose objective function involves spin variables. While the GAS algorithm with a conventional design of a quantum dictionary subroutine handles a problem associated with an objective function with binary variables <inline-formula><tex-math>$\\lbrace 0,1\\rbrace$</tex-math></inline-formula>, we reformulate the problem using spin variables <inline-formula><tex-math>$\\lbrace +1,-1\\rbrace$</tex-math></inline-formula> to simplify the algorithm. Specifically, we introduce a novel quantum dictionary subroutine that is designed for this spin-based formulation. A key benefit of this approach is the substantial reduction in the number of <sc>cnot</small> gates required to construct the quantum circuit. We theoretically demonstrate, for certain problems, that our proposed approach can reduce the gate complexity from an exponential order to a polynomial order, compared to the conventional binary-based approach. This improvement has the potential to enhance the scalability and efficiency of GAS, particularly in larger quantum computations.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-13"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11113358","citationCount":"0","resultStr":"{\"title\":\"Grover Adaptive Search With Spin Variables\",\"authors\":\"Shintaro Fujiwara;Naoki Ishikawa\",\"doi\":\"10.1109/TQE.2025.3595910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel approach to Grover adaptive search (GAS) for a combinatorial optimization problem whose objective function involves spin variables. While the GAS algorithm with a conventional design of a quantum dictionary subroutine handles a problem associated with an objective function with binary variables <inline-formula><tex-math>$\\\\lbrace 0,1\\\\rbrace$</tex-math></inline-formula>, we reformulate the problem using spin variables <inline-formula><tex-math>$\\\\lbrace +1,-1\\\\rbrace$</tex-math></inline-formula> to simplify the algorithm. Specifically, we introduce a novel quantum dictionary subroutine that is designed for this spin-based formulation. A key benefit of this approach is the substantial reduction in the number of <sc>cnot</small> gates required to construct the quantum circuit. We theoretically demonstrate, for certain problems, that our proposed approach can reduce the gate complexity from an exponential order to a polynomial order, compared to the conventional binary-based approach. This improvement has the potential to enhance the scalability and efficiency of GAS, particularly in larger quantum computations.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-13\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11113358\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11113358/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11113358/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目标函数包含自旋变量的组合优化问题,提出了一种新的Grover自适应搜索方法。虽然使用量子字典子程序的传统设计的GAS算法处理与具有二进制变量$\lbrace 0,1\rbrace$的目标函数相关的问题,但我们使用自旋变量$\lbrace +1,-1\rbrace$重新表述问题以简化算法。具体来说,我们引入了一种新的量子字典子程序,该程序是为这种基于自旋的公式设计的。这种方法的一个关键优点是大大减少了构建量子电路所需的纳米门的数量。我们从理论上证明,对于某些问题,与传统的基于二进制的方法相比,我们提出的方法可以将门复杂度从指数阶降低到多项式阶。这种改进有可能提高GAS的可扩展性和效率,特别是在更大的量子计算中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grover Adaptive Search With Spin Variables
This article presents a novel approach to Grover adaptive search (GAS) for a combinatorial optimization problem whose objective function involves spin variables. While the GAS algorithm with a conventional design of a quantum dictionary subroutine handles a problem associated with an objective function with binary variables $\lbrace 0,1\rbrace$, we reformulate the problem using spin variables $\lbrace +1,-1\rbrace$ to simplify the algorithm. Specifically, we introduce a novel quantum dictionary subroutine that is designed for this spin-based formulation. A key benefit of this approach is the substantial reduction in the number of cnot gates required to construct the quantum circuit. We theoretically demonstrate, for certain problems, that our proposed approach can reduce the gate complexity from an exponential order to a polynomial order, compared to the conventional binary-based approach. This improvement has the potential to enhance the scalability and efficiency of GAS, particularly in larger quantum computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信