基于tcepp的实用通信网络同步

IF 4.6
Swaraj Shekhar Nande;Shubh Agarwal;Stefan Krause;Riccardo Bassoli;Kay-Uwe Giering;Koteswararao Kondepu;Frank H.P. Fitzek
{"title":"基于tcepp的实用通信网络同步","authors":"Swaraj Shekhar Nande;Shubh Agarwal;Stefan Krause;Riccardo Bassoli;Kay-Uwe Giering;Koteswararao Kondepu;Frank H.P. Fitzek","doi":"10.1109/TQE.2025.3595706","DOIUrl":null,"url":null,"abstract":"Precise time synchronization is a fundamental challenge in distributed quantum systems, with direct implications for secure communication, quantum sensing, and next-generation quantum network technologies. In this work, we present an field programmable gate arrays (FPGA)-based implementation of a synchronization system using time-correlated entangled photons (TCEP), achieving timing precision below 200 ps across 10- and 20-km deployed fiber links using spectral filtering (SF) and dispersion compensation. The system exploits the intrinsic temporal correlations of entangled photon pairs to estimate synchronization offsets between remote nodes. A modular architecture is developed, featuring optimized OpenCL kernels for real-time correlation, timestamp aggregation, and peak normalization. This enables high-throughput performance with efficient utilization of hardware resources. Experimental validation confirms that the FPGA processes entangled photon timestamps and computes cross-correlation functions significantly faster than conventional CPU-based methods, achieving execution times in the range of a few milliseconds for datasets containing up to <inline-formula><tex-math>$10^{5}$</tex-math></inline-formula> timestamped events per node. Resource utilization analysis further demonstrates the scalability of the design, with the system operating reliably at a 397.5-MHz clock frequency while maintaining efficient logic, register, and memory usage. Our results illustrate the feasibility of deploying FPGA-based TCEP synchronization in real-world quantum networks, supporting applications in ultra-reliable low-latency communication, distributed quantum computing, and quantum-enhanced localization and sensing. This work bridges foundational quantum photonic principles and hardware-level deployment, laying the groundwork for timing infrastructure in future quantum internet and 6G networks.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-12"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11112616","citationCount":"0","resultStr":"{\"title\":\"TCEP-Based Synchronization for Practical Communication Network\",\"authors\":\"Swaraj Shekhar Nande;Shubh Agarwal;Stefan Krause;Riccardo Bassoli;Kay-Uwe Giering;Koteswararao Kondepu;Frank H.P. Fitzek\",\"doi\":\"10.1109/TQE.2025.3595706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise time synchronization is a fundamental challenge in distributed quantum systems, with direct implications for secure communication, quantum sensing, and next-generation quantum network technologies. In this work, we present an field programmable gate arrays (FPGA)-based implementation of a synchronization system using time-correlated entangled photons (TCEP), achieving timing precision below 200 ps across 10- and 20-km deployed fiber links using spectral filtering (SF) and dispersion compensation. The system exploits the intrinsic temporal correlations of entangled photon pairs to estimate synchronization offsets between remote nodes. A modular architecture is developed, featuring optimized OpenCL kernels for real-time correlation, timestamp aggregation, and peak normalization. This enables high-throughput performance with efficient utilization of hardware resources. Experimental validation confirms that the FPGA processes entangled photon timestamps and computes cross-correlation functions significantly faster than conventional CPU-based methods, achieving execution times in the range of a few milliseconds for datasets containing up to <inline-formula><tex-math>$10^{5}$</tex-math></inline-formula> timestamped events per node. Resource utilization analysis further demonstrates the scalability of the design, with the system operating reliably at a 397.5-MHz clock frequency while maintaining efficient logic, register, and memory usage. Our results illustrate the feasibility of deploying FPGA-based TCEP synchronization in real-world quantum networks, supporting applications in ultra-reliable low-latency communication, distributed quantum computing, and quantum-enhanced localization and sensing. This work bridges foundational quantum photonic principles and hardware-level deployment, laying the groundwork for timing infrastructure in future quantum internet and 6G networks.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-12\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11112616\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11112616/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11112616/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确的时间同步是分布式量子系统的一个基本挑战,对安全通信、量子传感和下一代量子网络技术具有直接影响。在这项工作中,我们提出了一种基于现场可编程门阵列(FPGA)的同步系统实现,该同步系统使用时间相关纠缠光子(TCEP),通过频谱滤波(SF)和色散补偿,在10公里和20公里部署的光纤链路上实现200 ps以下的定时精度。该系统利用纠缠光子对的固有时间相关性来估计远程节点之间的同步偏移。开发了一个模块化架构,具有优化的OpenCL内核,用于实时关联、时间戳聚合和峰值规范化。这样可以在有效利用硬件资源的同时实现高吞吐量性能。实验验证证实,FPGA处理纠缠光子时间戳和计算相互关联函数的速度明显快于传统的基于cpu的方法,对于每个节点包含高达10^{5}$时间戳事件的数据集,执行时间在几毫秒的范围内。资源利用分析进一步证明了该设计的可扩展性,系统在397.5 mhz时钟频率下可靠地运行,同时保持高效的逻辑、寄存器和内存使用。我们的研究结果说明了在现实世界的量子网络中部署基于fpga的TCEP同步的可行性,支持在超可靠低延迟通信、分布式量子计算和量子增强定位和传感中的应用。这项工作将基础量子光子原理和硬件级部署连接起来,为未来量子互联网和6G网络的定时基础设施奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCEP-Based Synchronization for Practical Communication Network
Precise time synchronization is a fundamental challenge in distributed quantum systems, with direct implications for secure communication, quantum sensing, and next-generation quantum network technologies. In this work, we present an field programmable gate arrays (FPGA)-based implementation of a synchronization system using time-correlated entangled photons (TCEP), achieving timing precision below 200 ps across 10- and 20-km deployed fiber links using spectral filtering (SF) and dispersion compensation. The system exploits the intrinsic temporal correlations of entangled photon pairs to estimate synchronization offsets between remote nodes. A modular architecture is developed, featuring optimized OpenCL kernels for real-time correlation, timestamp aggregation, and peak normalization. This enables high-throughput performance with efficient utilization of hardware resources. Experimental validation confirms that the FPGA processes entangled photon timestamps and computes cross-correlation functions significantly faster than conventional CPU-based methods, achieving execution times in the range of a few milliseconds for datasets containing up to $10^{5}$ timestamped events per node. Resource utilization analysis further demonstrates the scalability of the design, with the system operating reliably at a 397.5-MHz clock frequency while maintaining efficient logic, register, and memory usage. Our results illustrate the feasibility of deploying FPGA-based TCEP synchronization in real-world quantum networks, supporting applications in ultra-reliable low-latency communication, distributed quantum computing, and quantum-enhanced localization and sensing. This work bridges foundational quantum photonic principles and hardware-level deployment, laying the groundwork for timing infrastructure in future quantum internet and 6G networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信