{"title":"基于关系聚类的动态知识图并行空间构建与嵌入","authors":"Yao Liu;Yongfei Zhang","doi":"10.1109/TBDATA.2025.3527238","DOIUrl":null,"url":null,"abstract":"With the increasing amount of data in various domains, knowledge graphs (KGs) have become powerful tools for representing complex and heterogeneous information in a structured way, and for extracting valuable information from knowledge graphs through embedding techniques to support downstream tasks such as recommendation and Q&A systems. Knowledge graphs consist of triples that are continuously added as knowledge is updated. However, most existing embedding models are designed for static graphs, requiring the entire model to be retrained for each update, which is time-consuming. Existing global dynamic embedding models focus on exploiting the structural and relational information of the whole graph to achieve embedding quality, resulting in reduced dynamic efficiency. To address this problem, we propose a relational clustering-based parallel space model in which knowledge from different domains is embedded in different subspaces, allowing each subspace to focus on the data characteristics of a specific domain, thereby improving the quality of knowledge. Second, the new data only affects some subspaces but not the performance of other spaces, improving the model's adaptability to dynamics. Furthermore, we employ two incremental approaches based on the type of added data to improve the efficiency of dynamic embedding while ensuring that the added data preserves the characteristics of the parallel space. The experimental results show that the dynamic embedding efficiency of our model is improved by an average of 50.3% compared to the SOTA dynamic embedding model for the link prediction task. Particularly on FB15K, our model not only improves the efficiency by 41% but also increases the accuracy by 7.5%, demonstrating the accuracy and efficiency of our model.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 5","pages":"2308-2320"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relational Clustering-Based Parallel Spaces Construction and Embedding for Dynamic Knowledge Graph\",\"authors\":\"Yao Liu;Yongfei Zhang\",\"doi\":\"10.1109/TBDATA.2025.3527238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing amount of data in various domains, knowledge graphs (KGs) have become powerful tools for representing complex and heterogeneous information in a structured way, and for extracting valuable information from knowledge graphs through embedding techniques to support downstream tasks such as recommendation and Q&A systems. Knowledge graphs consist of triples that are continuously added as knowledge is updated. However, most existing embedding models are designed for static graphs, requiring the entire model to be retrained for each update, which is time-consuming. Existing global dynamic embedding models focus on exploiting the structural and relational information of the whole graph to achieve embedding quality, resulting in reduced dynamic efficiency. To address this problem, we propose a relational clustering-based parallel space model in which knowledge from different domains is embedded in different subspaces, allowing each subspace to focus on the data characteristics of a specific domain, thereby improving the quality of knowledge. Second, the new data only affects some subspaces but not the performance of other spaces, improving the model's adaptability to dynamics. Furthermore, we employ two incremental approaches based on the type of added data to improve the efficiency of dynamic embedding while ensuring that the added data preserves the characteristics of the parallel space. The experimental results show that the dynamic embedding efficiency of our model is improved by an average of 50.3% compared to the SOTA dynamic embedding model for the link prediction task. Particularly on FB15K, our model not only improves the efficiency by 41% but also increases the accuracy by 7.5%, demonstrating the accuracy and efficiency of our model.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 5\",\"pages\":\"2308-2320\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833775/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833775/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Relational Clustering-Based Parallel Spaces Construction and Embedding for Dynamic Knowledge Graph
With the increasing amount of data in various domains, knowledge graphs (KGs) have become powerful tools for representing complex and heterogeneous information in a structured way, and for extracting valuable information from knowledge graphs through embedding techniques to support downstream tasks such as recommendation and Q&A systems. Knowledge graphs consist of triples that are continuously added as knowledge is updated. However, most existing embedding models are designed for static graphs, requiring the entire model to be retrained for each update, which is time-consuming. Existing global dynamic embedding models focus on exploiting the structural and relational information of the whole graph to achieve embedding quality, resulting in reduced dynamic efficiency. To address this problem, we propose a relational clustering-based parallel space model in which knowledge from different domains is embedded in different subspaces, allowing each subspace to focus on the data characteristics of a specific domain, thereby improving the quality of knowledge. Second, the new data only affects some subspaces but not the performance of other spaces, improving the model's adaptability to dynamics. Furthermore, we employ two incremental approaches based on the type of added data to improve the efficiency of dynamic embedding while ensuring that the added data preserves the characteristics of the parallel space. The experimental results show that the dynamic embedding efficiency of our model is improved by an average of 50.3% compared to the SOTA dynamic embedding model for the link prediction task. Particularly on FB15K, our model not only improves the efficiency by 41% but also increases the accuracy by 7.5%, demonstrating the accuracy and efficiency of our model.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.