多层次模型空间中的异常检测

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ao Chen;Xiren Zhou;Yizhan Fan;Huanhuan Chen
{"title":"多层次模型空间中的异常检测","authors":"Ao Chen;Xiren Zhou;Yizhan Fan;Huanhuan Chen","doi":"10.1109/TBDATA.2025.3534625","DOIUrl":null,"url":null,"abstract":"Anomaly detection (AD) is gaining prominence, especially in situations with limited labeled data or unknown anomalies, demanding an efficient approach with minimal reliance on labeled data or prior knowledge. Building upon the framework of Learning in the Model Space (LMS), this paper proposes conducting AD through Learning in the Multi-Level Model Spaces (MLMS). LMS transforms the data from the data space to the model space by representing each data instance with a fitted model. In MLMS, to fully capture the dynamic characteristics within the data, multi-level details of the original data instance are decomposed. These details are individually fitted, resulting in a set of fitted models that capture the multi-level dynamic characteristics of the original instance. Representing each data instance with a set of fitted models, rather than a single one, transforms it from the data space into the multi-level model spaces. The pairwise difference measurement between model sets is introduced, fully considering the distance between fitted models and the intra-class aggregation of similar models at each level of detail. Subsequently, effective AD can be implemented in the multi-level model spaces, with or without sufficient multi-class labeled data. Experiments on multiple AD datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 5","pages":"2376-2387"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection in Multi-Level Model Space\",\"authors\":\"Ao Chen;Xiren Zhou;Yizhan Fan;Huanhuan Chen\",\"doi\":\"10.1109/TBDATA.2025.3534625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection (AD) is gaining prominence, especially in situations with limited labeled data or unknown anomalies, demanding an efficient approach with minimal reliance on labeled data or prior knowledge. Building upon the framework of Learning in the Model Space (LMS), this paper proposes conducting AD through Learning in the Multi-Level Model Spaces (MLMS). LMS transforms the data from the data space to the model space by representing each data instance with a fitted model. In MLMS, to fully capture the dynamic characteristics within the data, multi-level details of the original data instance are decomposed. These details are individually fitted, resulting in a set of fitted models that capture the multi-level dynamic characteristics of the original instance. Representing each data instance with a set of fitted models, rather than a single one, transforms it from the data space into the multi-level model spaces. The pairwise difference measurement between model sets is introduced, fully considering the distance between fitted models and the intra-class aggregation of similar models at each level of detail. Subsequently, effective AD can be implemented in the multi-level model spaces, with or without sufficient multi-class labeled data. Experiments on multiple AD datasets demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 5\",\"pages\":\"2376-2387\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10854815/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854815/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

异常检测(AD)越来越受到重视,特别是在标记数据有限或未知异常的情况下,需要一种对标记数据或先验知识依赖最小的有效方法。本文在模型空间学习(LMS)框架的基础上,提出了多层次模型空间学习(MLMS)在多层次模型空间中进行决策。LMS通过用拟合模型表示每个数据实例,将数据从数据空间转换为模型空间。在MLMS中,为了充分捕捉数据内部的动态特征,对原始数据实例的多层次细节进行了分解。这些细节被单独拟合,从而产生一组拟合模型,这些模型捕获了原始实例的多层次动态特征。用一组拟合模型(而不是单个模型)表示每个数据实例,将其从数据空间转换为多级模型空间。引入了模型集之间的两两差分度量,充分考虑了拟合模型之间的距离和相似模型在每个细节层次上的类内聚集。随后,无论是否有足够的多类标记数据,都可以在多级模型空间中实现有效的AD。在多个AD数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection in Multi-Level Model Space
Anomaly detection (AD) is gaining prominence, especially in situations with limited labeled data or unknown anomalies, demanding an efficient approach with minimal reliance on labeled data or prior knowledge. Building upon the framework of Learning in the Model Space (LMS), this paper proposes conducting AD through Learning in the Multi-Level Model Spaces (MLMS). LMS transforms the data from the data space to the model space by representing each data instance with a fitted model. In MLMS, to fully capture the dynamic characteristics within the data, multi-level details of the original data instance are decomposed. These details are individually fitted, resulting in a set of fitted models that capture the multi-level dynamic characteristics of the original instance. Representing each data instance with a set of fitted models, rather than a single one, transforms it from the data space into the multi-level model spaces. The pairwise difference measurement between model sets is introduced, fully considering the distance between fitted models and the intra-class aggregation of similar models at each level of detail. Subsequently, effective AD can be implemented in the multi-level model spaces, with or without sufficient multi-class labeled data. Experiments on multiple AD datasets demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信