利用U-Net CNN和多模态遥感数据增强贫民窟制图:以望加锡市为例

IF 4.4
Yohanes Fridolin Hestrio;Eduard Thomas Prakoso;Kiki Winda Veronica;Ika Siwi Supriyani;Destri Yanti Hutapea;Siti Desty Wahyuningsih;Nico Cendiana;Steward Augusto;Krisna Malik Sukarno;Olivia Maftukhaturrizqoh;Rubini Jusuf;Orbita Roswintiarti;Wisnu Jatmiko
{"title":"利用U-Net CNN和多模态遥感数据增强贫民窟制图:以望加锡市为例","authors":"Yohanes Fridolin Hestrio;Eduard Thomas Prakoso;Kiki Winda Veronica;Ika Siwi Supriyani;Destri Yanti Hutapea;Siti Desty Wahyuningsih;Nico Cendiana;Steward Augusto;Krisna Malik Sukarno;Olivia Maftukhaturrizqoh;Rubini Jusuf;Orbita Roswintiarti;Wisnu Jatmiko","doi":"10.1109/LGRS.2025.3601167","DOIUrl":null,"url":null,"abstract":"Urban slums present critical challenges for sustainable development, particularly in rapidly urbanizing cities like Makassar, Indonesia. This study develops an automated slum mapping approach that integrates high-resolution SPOT-6/7 satellite imagery (1.5-m spatial resolution) with multimodal geospatial data using a U-Net convolutional neural network. Our methodology combines spectral and textural features from satellite imagery with nighttime light emissions, infrastructure proximity analysis, land use classifications, and socioeconomic indicators. The integrated approach achieves an overall accuracy of 97.1%–98.3% across both the datasets. However, slum-specific classification remains challenging with producer’s accuracy of 55.8%–59.1% and user’s accuracy of 22.9%–35.7%, yielding F1-scores of 0.33–0.43 for slum detection. Despite these limitations, the approach demonstrates significant enhancements over traditional census-based methods through automated processing, improved spatial resolution (1.5 m versus administrative units), and increased temporal frequency (annual versus decadal updates). The framework provides actionable insights for urban planning and social assistance targeting while establishing a foundation for automated slum monitoring system iterative improvement.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Slum Mapping Through U-Net CNN and Multimodal Remote Sensing Data: A Case Study of Makassar City\",\"authors\":\"Yohanes Fridolin Hestrio;Eduard Thomas Prakoso;Kiki Winda Veronica;Ika Siwi Supriyani;Destri Yanti Hutapea;Siti Desty Wahyuningsih;Nico Cendiana;Steward Augusto;Krisna Malik Sukarno;Olivia Maftukhaturrizqoh;Rubini Jusuf;Orbita Roswintiarti;Wisnu Jatmiko\",\"doi\":\"10.1109/LGRS.2025.3601167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban slums present critical challenges for sustainable development, particularly in rapidly urbanizing cities like Makassar, Indonesia. This study develops an automated slum mapping approach that integrates high-resolution SPOT-6/7 satellite imagery (1.5-m spatial resolution) with multimodal geospatial data using a U-Net convolutional neural network. Our methodology combines spectral and textural features from satellite imagery with nighttime light emissions, infrastructure proximity analysis, land use classifications, and socioeconomic indicators. The integrated approach achieves an overall accuracy of 97.1%–98.3% across both the datasets. However, slum-specific classification remains challenging with producer’s accuracy of 55.8%–59.1% and user’s accuracy of 22.9%–35.7%, yielding F1-scores of 0.33–0.43 for slum detection. Despite these limitations, the approach demonstrates significant enhancements over traditional census-based methods through automated processing, improved spatial resolution (1.5 m versus administrative units), and increased temporal frequency (annual versus decadal updates). The framework provides actionable insights for urban planning and social assistance targeting while establishing a foundation for automated slum monitoring system iterative improvement.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11132386/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11132386/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市贫民窟对可持续发展构成严峻挑战,特别是在印度尼西亚望加锡等快速城市化的城市。本研究开发了一种自动化贫民窟测绘方法,该方法使用U-Net卷积神经网络将高分辨率SPOT-6/7卫星图像(1.5米空间分辨率)与多模态地理空间数据集成在一起。我们的方法将卫星图像的光谱和纹理特征与夜间光发射、基础设施接近性分析、土地利用分类和社会经济指标相结合。综合方法在两个数据集上的总体准确率为97.1%-98.3%。然而,针对贫民窟的分类仍然具有挑战性,生产者的准确率为55.8%-59.1%,用户的准确率为22.9%-35.7%,贫民窟检测的f1得分为0.33-0.43。尽管存在这些局限性,但该方法通过自动化处理、提高空间分辨率(相对于行政单位1.5米)和增加时间频率(年度更新相对于十年更新),比传统的基于人口普查的方法有了显著的增强。该框架为城市规划和社会援助目标提供了可操作的见解,同时为贫民窟自动监测系统的迭代改进奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Slum Mapping Through U-Net CNN and Multimodal Remote Sensing Data: A Case Study of Makassar City
Urban slums present critical challenges for sustainable development, particularly in rapidly urbanizing cities like Makassar, Indonesia. This study develops an automated slum mapping approach that integrates high-resolution SPOT-6/7 satellite imagery (1.5-m spatial resolution) with multimodal geospatial data using a U-Net convolutional neural network. Our methodology combines spectral and textural features from satellite imagery with nighttime light emissions, infrastructure proximity analysis, land use classifications, and socioeconomic indicators. The integrated approach achieves an overall accuracy of 97.1%–98.3% across both the datasets. However, slum-specific classification remains challenging with producer’s accuracy of 55.8%–59.1% and user’s accuracy of 22.9%–35.7%, yielding F1-scores of 0.33–0.43 for slum detection. Despite these limitations, the approach demonstrates significant enhancements over traditional census-based methods through automated processing, improved spatial resolution (1.5 m versus administrative units), and increased temporal frequency (annual versus decadal updates). The framework provides actionable insights for urban planning and social assistance targeting while establishing a foundation for automated slum monitoring system iterative improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信