基于广义浓度的状态估计传感器选择性能保证

Christopher I. Calle;Shaunak D. Bopardikar
{"title":"基于广义浓度的状态估计传感器选择性能保证","authors":"Christopher I. Calle;Shaunak D. Bopardikar","doi":"10.1109/OJCSYS.2025.3598626","DOIUrl":null,"url":null,"abstract":"In this work, we apply concentration-based results to the problem of sensor selection for state estimation to provide us with meaningful guarantees on the properties of our selection. We consider a selection of sensors that is randomly chosen with replacement for a stochastic linear dynamical system, and we utilize the Kalman filter to perform state estimation. Our main contributions are four-fold. First, we derive novel matrix concentration inequalities (CIs) for a sum of positive semi-definite random matrices. Second, we provide two algorithms for specifying the parameters required to apply our matrix CIs, a novel statistical tool. Third, we propose two avenues for improving the sample complexity of this statistical tool. Fourth, we provide a procedure for optimizing the semi-definite bounds of our matrix CIs. When our matrix CIs are applied to the problem of sensor selection for state estimation, our final contribution is a procedure for optimizing the filtered state estimation error covariance matrix of the Kalman filter. Finally, we show through simulations that our bounds significantly outperform those of an existing matrix CI and are applicable for a larger parameter regime. Also, we demonstrate the applicability of our matrix CIs for the state estimation of nonlinear dynamical systems.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"250-270"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11123730","citationCount":"0","resultStr":"{\"title\":\"Generalized Concentration-Based Performance Guarantees on Sensor Selection for State Estimation\",\"authors\":\"Christopher I. Calle;Shaunak D. Bopardikar\",\"doi\":\"10.1109/OJCSYS.2025.3598626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we apply concentration-based results to the problem of sensor selection for state estimation to provide us with meaningful guarantees on the properties of our selection. We consider a selection of sensors that is randomly chosen with replacement for a stochastic linear dynamical system, and we utilize the Kalman filter to perform state estimation. Our main contributions are four-fold. First, we derive novel matrix concentration inequalities (CIs) for a sum of positive semi-definite random matrices. Second, we provide two algorithms for specifying the parameters required to apply our matrix CIs, a novel statistical tool. Third, we propose two avenues for improving the sample complexity of this statistical tool. Fourth, we provide a procedure for optimizing the semi-definite bounds of our matrix CIs. When our matrix CIs are applied to the problem of sensor selection for state estimation, our final contribution is a procedure for optimizing the filtered state estimation error covariance matrix of the Kalman filter. Finally, we show through simulations that our bounds significantly outperform those of an existing matrix CI and are applicable for a larger parameter regime. Also, we demonstrate the applicability of our matrix CIs for the state estimation of nonlinear dynamical systems.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"4 \",\"pages\":\"250-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11123730\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11123730/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11123730/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将基于浓度的结果应用于状态估计的传感器选择问题,为我们提供了对我们选择的属性的有意义的保证。我们考虑用随机线性动力系统替换随机选择的传感器的选择,并利用卡尔曼滤波器进行状态估计。我们的主要贡献有四方面。首先,我们导出了一类正半定随机矩阵和的矩阵浓度不等式。其次,我们提供了两种算法来指定应用我们的矩阵CIs(一种新的统计工具)所需的参数。第三,我们提出了两种方法来提高该统计工具的样本复杂度。第四,我们提供了一个优化矩阵ci的半定界的过程。当我们的矩阵ci应用于状态估计的传感器选择问题时,我们的最终贡献是优化卡尔曼滤波器的滤波状态估计误差协方差矩阵的过程。最后,我们通过模拟表明,我们的边界明显优于现有矩阵CI的边界,并且适用于更大的参数范围。同时,我们也证明了矩阵ci对非线性动力系统状态估计的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Concentration-Based Performance Guarantees on Sensor Selection for State Estimation
In this work, we apply concentration-based results to the problem of sensor selection for state estimation to provide us with meaningful guarantees on the properties of our selection. We consider a selection of sensors that is randomly chosen with replacement for a stochastic linear dynamical system, and we utilize the Kalman filter to perform state estimation. Our main contributions are four-fold. First, we derive novel matrix concentration inequalities (CIs) for a sum of positive semi-definite random matrices. Second, we provide two algorithms for specifying the parameters required to apply our matrix CIs, a novel statistical tool. Third, we propose two avenues for improving the sample complexity of this statistical tool. Fourth, we provide a procedure for optimizing the semi-definite bounds of our matrix CIs. When our matrix CIs are applied to the problem of sensor selection for state estimation, our final contribution is a procedure for optimizing the filtered state estimation error covariance matrix of the Kalman filter. Finally, we show through simulations that our bounds significantly outperform those of an existing matrix CI and are applicable for a larger parameter regime. Also, we demonstrate the applicability of our matrix CIs for the state estimation of nonlinear dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信