Yago Ryan Pinheiro dos Santos , Igor Fernandes Gomes , Analice Lima , Marcos Allyson Felipe Rodrigues , Ernani Dias da Silva Filho , José Antonio Barbosa , Antonio Celso Dantas Antonino , Daniel Amancio Duarte , Aline Flávia Nunes Remígio Antunes
{"title":"碳酸盐岩基质酸化过程中酸岩相互作用及裂缝影响研究","authors":"Yago Ryan Pinheiro dos Santos , Igor Fernandes Gomes , Analice Lima , Marcos Allyson Felipe Rodrigues , Ernani Dias da Silva Filho , José Antonio Barbosa , Antonio Celso Dantas Antonino , Daniel Amancio Duarte , Aline Flávia Nunes Remígio Antunes","doi":"10.1016/j.petlm.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to evaluate the effects of chemical dissolution on the properties of reservoirs by matrix acidizing, using synthetic carbonate rocks with and without fractures, prepared with limestone powder, epoxy resin (chemically inert) and fractures represented by non-woven geotextile strips positioned perpendicular to the fluid flow direction, to check their influence on the dissolution process. A system was developed using an acid injection cell to carry out acidizing tests, applying a solution of acetic acid and distilled water at constant pressure, to observe the organic acid-rock interaction for contact times of 36, 72 and 108 h. Chemical and petrophysical tests, as well as image analyses using X-ray micro-computed tomography were conducted to characterize the acidizing effects. Changes in rock properties were observed as the contact time increased, particularly the increase in porosity and permeability. Was observed the formation of CO<sub>2</sub> and calcium acetate as reaction products between calcite and acid solution. Ramified wormhole and uniform dissolution patterns were noted; moreover, fractures influenced the dissolution in regions where they were inserted, increasing the branches present along their structure and deviating the fluid flow to a perpendicular direction to the injection direction, especially observed at 72 h, highlighting the use of geotextile as a material that reproduces the fractures' transmissivity in synthetic samples. The methodologies used contributed to presenting the effects of mineral dissolution on the properties of reservoir rocks post-stimulation, emphasizing the importance of chemical/petrophysical aspects and the contribution of fractures to better understand the matrix acidizing efficiency in field.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"11 4","pages":"Pages 475-495"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-rock interaction investigation and the influence of fractures during matrix acidizing in carbonate rocks\",\"authors\":\"Yago Ryan Pinheiro dos Santos , Igor Fernandes Gomes , Analice Lima , Marcos Allyson Felipe Rodrigues , Ernani Dias da Silva Filho , José Antonio Barbosa , Antonio Celso Dantas Antonino , Daniel Amancio Duarte , Aline Flávia Nunes Remígio Antunes\",\"doi\":\"10.1016/j.petlm.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to evaluate the effects of chemical dissolution on the properties of reservoirs by matrix acidizing, using synthetic carbonate rocks with and without fractures, prepared with limestone powder, epoxy resin (chemically inert) and fractures represented by non-woven geotextile strips positioned perpendicular to the fluid flow direction, to check their influence on the dissolution process. A system was developed using an acid injection cell to carry out acidizing tests, applying a solution of acetic acid and distilled water at constant pressure, to observe the organic acid-rock interaction for contact times of 36, 72 and 108 h. Chemical and petrophysical tests, as well as image analyses using X-ray micro-computed tomography were conducted to characterize the acidizing effects. Changes in rock properties were observed as the contact time increased, particularly the increase in porosity and permeability. Was observed the formation of CO<sub>2</sub> and calcium acetate as reaction products between calcite and acid solution. Ramified wormhole and uniform dissolution patterns were noted; moreover, fractures influenced the dissolution in regions where they were inserted, increasing the branches present along their structure and deviating the fluid flow to a perpendicular direction to the injection direction, especially observed at 72 h, highlighting the use of geotextile as a material that reproduces the fractures' transmissivity in synthetic samples. The methodologies used contributed to presenting the effects of mineral dissolution on the properties of reservoir rocks post-stimulation, emphasizing the importance of chemical/petrophysical aspects and the contribution of fractures to better understand the matrix acidizing efficiency in field.</div></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"11 4\",\"pages\":\"Pages 475-495\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656125000501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656125000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Acid-rock interaction investigation and the influence of fractures during matrix acidizing in carbonate rocks
This study aimed to evaluate the effects of chemical dissolution on the properties of reservoirs by matrix acidizing, using synthetic carbonate rocks with and without fractures, prepared with limestone powder, epoxy resin (chemically inert) and fractures represented by non-woven geotextile strips positioned perpendicular to the fluid flow direction, to check their influence on the dissolution process. A system was developed using an acid injection cell to carry out acidizing tests, applying a solution of acetic acid and distilled water at constant pressure, to observe the organic acid-rock interaction for contact times of 36, 72 and 108 h. Chemical and petrophysical tests, as well as image analyses using X-ray micro-computed tomography were conducted to characterize the acidizing effects. Changes in rock properties were observed as the contact time increased, particularly the increase in porosity and permeability. Was observed the formation of CO2 and calcium acetate as reaction products between calcite and acid solution. Ramified wormhole and uniform dissolution patterns were noted; moreover, fractures influenced the dissolution in regions where they were inserted, increasing the branches present along their structure and deviating the fluid flow to a perpendicular direction to the injection direction, especially observed at 72 h, highlighting the use of geotextile as a material that reproduces the fractures' transmissivity in synthetic samples. The methodologies used contributed to presenting the effects of mineral dissolution on the properties of reservoir rocks post-stimulation, emphasizing the importance of chemical/petrophysical aspects and the contribution of fractures to better understand the matrix acidizing efficiency in field.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing