基于数据驱动强化学习的Stackelberg博弈框架下对抗干扰攻击的多信道传输能量优化分配

IF 4.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Kecheng Liu , Ya Zhang
{"title":"基于数据驱动强化学习的Stackelberg博弈框架下对抗干扰攻击的多信道传输能量优化分配","authors":"Kecheng Liu ,&nbsp;Ya Zhang","doi":"10.1016/j.jfranklin.2025.108022","DOIUrl":null,"url":null,"abstract":"<div><div>Employing a Markov Stackelberg game and Signal-to-Interference-plus-Noise Ratio (SINR) model, this research develops a strategic framework for sensor power scheduling in Cyber-Physical Systems (CPSs) under adversarial conditions. It innovates by determining energy-efficient sensor transmission strategies against jamming, using data-driven reinforcement learning to optimize power allocation adaptively. The necessary training parameter design methodology is presented by the study, and stability proofs are provided. Simulation results demonstrate that the proposed algorithm outperforms existing approaches in reducing estimation errors and mitigating the attacker’s impact.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 15","pages":"Article 108022"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal multi-channel transmission energy allocation against jamming attacks via data-driven reinforcement learning under Stackelberg game framework\",\"authors\":\"Kecheng Liu ,&nbsp;Ya Zhang\",\"doi\":\"10.1016/j.jfranklin.2025.108022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Employing a Markov Stackelberg game and Signal-to-Interference-plus-Noise Ratio (SINR) model, this research develops a strategic framework for sensor power scheduling in Cyber-Physical Systems (CPSs) under adversarial conditions. It innovates by determining energy-efficient sensor transmission strategies against jamming, using data-driven reinforcement learning to optimize power allocation adaptively. The necessary training parameter design methodology is presented by the study, and stability proofs are provided. Simulation results demonstrate that the proposed algorithm outperforms existing approaches in reducing estimation errors and mitigating the attacker’s impact.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 15\",\"pages\":\"Article 108022\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225005149\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225005149","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用Markov Stackelberg博弈和信噪比(SINR)模型,开发了对抗条件下网络物理系统(cps)中传感器功率调度的策略框架。它通过确定抗干扰的节能传感器传输策略进行创新,使用数据驱动的强化学习自适应优化功率分配。提出了必要的训练参数设计方法,并给出了稳定性证明。仿真结果表明,该算法在减少估计误差和减轻攻击者影响方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal multi-channel transmission energy allocation against jamming attacks via data-driven reinforcement learning under Stackelberg game framework
Employing a Markov Stackelberg game and Signal-to-Interference-plus-Noise Ratio (SINR) model, this research develops a strategic framework for sensor power scheduling in Cyber-Physical Systems (CPSs) under adversarial conditions. It innovates by determining energy-efficient sensor transmission strategies against jamming, using data-driven reinforcement learning to optimize power allocation adaptively. The necessary training parameter design methodology is presented by the study, and stability proofs are provided. Simulation results demonstrate that the proposed algorithm outperforms existing approaches in reducing estimation errors and mitigating the attacker’s impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信