Raphaël Bodin , Lucas Godin , Camille Mougin , Anthony Lecomte , Vanessa Larrigaldie , Justyne Feat-Vetel , Sarah Méresse , Céline Montécot-Dubourg , Paulo Marcelo , Stéphane Mortaud , Anne-Sophie Villegier
{"title":"900 MHz射频暴露后啮齿动物脑细胞发育的改变","authors":"Raphaël Bodin , Lucas Godin , Camille Mougin , Anthony Lecomte , Vanessa Larrigaldie , Justyne Feat-Vetel , Sarah Méresse , Céline Montécot-Dubourg , Paulo Marcelo , Stéphane Mortaud , Anne-Sophie Villegier","doi":"10.1016/j.neuro.2025.103312","DOIUrl":null,"url":null,"abstract":"<div><div>Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment. <em>In vivo</em>, the effects of pre- and post-natal 0.08 and 0.4 W/kg specific absorption rate (SAR) exposure were assessed for their impact on the proteomic profile at postnatal day 0 (PND 0). Brain-derived neurotrophic factor (BDNF), BrdU+ proliferative cells, synaptogenesis, and oxidative stress in the hippocampus and cortex of rat pups were studied at PND 8 and PND 17. Effects of the lowest SAR (0.08 W/kg) were assessed <em>in vitro</em> to afford mechanistic data regarding neural stem cells (NSCs) differentiation. <em>In vivo</em> results showed a decrease in BDNF level and BrdU+ proliferative cells with a decrease in synapse balance (excitatory synapses/inhibitory synapses). <em>In vitro</em>, at 0.08 W/kg there was an increase in Ki-67 + proliferative cells, apoptosis, and double-strand DNA breaks in NSCs. A lower ratio of B1 cells (primary progenitors of NSCs) among total cerebral cells and a higher ratio of oligodendrocyte progenitor cells and astrocytes were observed in the exposed NSCs. Our findings suggest that key cellular events for brain ontogenesis are likely to undergo changes with RF-EMF 900 MHz exposure during early development. These support the hypothesis that the developing central nervous system is vulnerable to RF-EMF exposures in rodents at regulatory thresholds.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"111 ","pages":"Article 103312"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered development in rodent brain cells after 900 MHz radiofrequency exposure\",\"authors\":\"Raphaël Bodin , Lucas Godin , Camille Mougin , Anthony Lecomte , Vanessa Larrigaldie , Justyne Feat-Vetel , Sarah Méresse , Céline Montécot-Dubourg , Paulo Marcelo , Stéphane Mortaud , Anne-Sophie Villegier\",\"doi\":\"10.1016/j.neuro.2025.103312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment. <em>In vivo</em>, the effects of pre- and post-natal 0.08 and 0.4 W/kg specific absorption rate (SAR) exposure were assessed for their impact on the proteomic profile at postnatal day 0 (PND 0). Brain-derived neurotrophic factor (BDNF), BrdU+ proliferative cells, synaptogenesis, and oxidative stress in the hippocampus and cortex of rat pups were studied at PND 8 and PND 17. Effects of the lowest SAR (0.08 W/kg) were assessed <em>in vitro</em> to afford mechanistic data regarding neural stem cells (NSCs) differentiation. <em>In vivo</em> results showed a decrease in BDNF level and BrdU+ proliferative cells with a decrease in synapse balance (excitatory synapses/inhibitory synapses). <em>In vitro</em>, at 0.08 W/kg there was an increase in Ki-67 + proliferative cells, apoptosis, and double-strand DNA breaks in NSCs. A lower ratio of B1 cells (primary progenitors of NSCs) among total cerebral cells and a higher ratio of oligodendrocyte progenitor cells and astrocytes were observed in the exposed NSCs. Our findings suggest that key cellular events for brain ontogenesis are likely to undergo changes with RF-EMF 900 MHz exposure during early development. These support the hypothesis that the developing central nervous system is vulnerable to RF-EMF exposures in rodents at regulatory thresholds.</div></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"111 \",\"pages\":\"Article 103312\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X2500110X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X2500110X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Altered development in rodent brain cells after 900 MHz radiofrequency exposure
Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment. In vivo, the effects of pre- and post-natal 0.08 and 0.4 W/kg specific absorption rate (SAR) exposure were assessed for their impact on the proteomic profile at postnatal day 0 (PND 0). Brain-derived neurotrophic factor (BDNF), BrdU+ proliferative cells, synaptogenesis, and oxidative stress in the hippocampus and cortex of rat pups were studied at PND 8 and PND 17. Effects of the lowest SAR (0.08 W/kg) were assessed in vitro to afford mechanistic data regarding neural stem cells (NSCs) differentiation. In vivo results showed a decrease in BDNF level and BrdU+ proliferative cells with a decrease in synapse balance (excitatory synapses/inhibitory synapses). In vitro, at 0.08 W/kg there was an increase in Ki-67 + proliferative cells, apoptosis, and double-strand DNA breaks in NSCs. A lower ratio of B1 cells (primary progenitors of NSCs) among total cerebral cells and a higher ratio of oligodendrocyte progenitor cells and astrocytes were observed in the exposed NSCs. Our findings suggest that key cellular events for brain ontogenesis are likely to undergo changes with RF-EMF 900 MHz exposure during early development. These support the hypothesis that the developing central nervous system is vulnerable to RF-EMF exposures in rodents at regulatory thresholds.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.