PC-Gym:过程控制问题的基准环境

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Maximilian Bloor , José Torraca , Ilya Orson Sandoval , Akhil Ahmed , Martha White , Mehmet Mercangöz , Calvin Tsay , Ehecatl Antonio Del Rio Chanona , Max Mowbray
{"title":"PC-Gym:过程控制问题的基准环境","authors":"Maximilian Bloor ,&nbsp;José Torraca ,&nbsp;Ilya Orson Sandoval ,&nbsp;Akhil Ahmed ,&nbsp;Martha White ,&nbsp;Mehmet Mercangöz ,&nbsp;Calvin Tsay ,&nbsp;Ehecatl Antonio Del Rio Chanona ,&nbsp;Max Mowbray","doi":"10.1016/j.compchemeng.2025.109363","DOIUrl":null,"url":null,"abstract":"<div><div><span>PC-Gym</span> is an open-source tool for developing and evaluating reinforcement learning (RL) algorithms in chemical process control. It features models that simulate various chemical processes, incorporating nonlinear dynamics, disturbances, and constraints. The tool includes customizable constraint handling, disturbance generation, reward function design, and enables comparison of RL algorithms against Nonlinear Model Predictive Control (NMPC) across different scenarios. Case studies demonstrate the framework’s effectiveness in evaluating RL approaches for systems like continuously stirred tank reactors, multistage extraction processes, and crystallization reactors. The results reveal performance gaps between RL algorithms and NMPC oracles, highlighting areas for improvement and enabling benchmarking. By providing a standardized platform, <span>PC-Gym</span> aims to accelerate research at the intersection of machine learning, control, and process systems engineering. Connecting RL with practical industrial process control applications, <span>PC-Gym</span> offers researchers a tool for exploring data-driven control solutions.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109363"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PC-Gym: Benchmark environments for process control problems\",\"authors\":\"Maximilian Bloor ,&nbsp;José Torraca ,&nbsp;Ilya Orson Sandoval ,&nbsp;Akhil Ahmed ,&nbsp;Martha White ,&nbsp;Mehmet Mercangöz ,&nbsp;Calvin Tsay ,&nbsp;Ehecatl Antonio Del Rio Chanona ,&nbsp;Max Mowbray\",\"doi\":\"10.1016/j.compchemeng.2025.109363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>PC-Gym</span> is an open-source tool for developing and evaluating reinforcement learning (RL) algorithms in chemical process control. It features models that simulate various chemical processes, incorporating nonlinear dynamics, disturbances, and constraints. The tool includes customizable constraint handling, disturbance generation, reward function design, and enables comparison of RL algorithms against Nonlinear Model Predictive Control (NMPC) across different scenarios. Case studies demonstrate the framework’s effectiveness in evaluating RL approaches for systems like continuously stirred tank reactors, multistage extraction processes, and crystallization reactors. The results reveal performance gaps between RL algorithms and NMPC oracles, highlighting areas for improvement and enabling benchmarking. By providing a standardized platform, <span>PC-Gym</span> aims to accelerate research at the intersection of machine learning, control, and process systems engineering. Connecting RL with practical industrial process control applications, <span>PC-Gym</span> offers researchers a tool for exploring data-driven control solutions.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109363\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425003667\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003667","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

PC-Gym是一个用于开发和评估化学过程控制中的强化学习(RL)算法的开源工具。它的特点是模拟各种化学过程的模型,包括非线性动力学、干扰和约束。该工具包括可定制的约束处理、干扰生成、奖励函数设计,并可以在不同场景下比较RL算法与非线性模型预测控制(NMPC)。案例研究证明了该框架在评估连续搅拌槽式反应器、多级萃取过程和结晶反应器等系统的RL方法方面的有效性。结果揭示了RL算法和NMPC预言机之间的性能差距,突出了需要改进的领域和实现基准测试。通过提供一个标准化的平台,PC-Gym旨在加速机器学习、控制和过程系统工程交叉领域的研究。PC-Gym将RL与实际的工业过程控制应用相结合,为研究人员提供了探索数据驱动控制解决方案的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PC-Gym: Benchmark environments for process control problems
PC-Gym is an open-source tool for developing and evaluating reinforcement learning (RL) algorithms in chemical process control. It features models that simulate various chemical processes, incorporating nonlinear dynamics, disturbances, and constraints. The tool includes customizable constraint handling, disturbance generation, reward function design, and enables comparison of RL algorithms against Nonlinear Model Predictive Control (NMPC) across different scenarios. Case studies demonstrate the framework’s effectiveness in evaluating RL approaches for systems like continuously stirred tank reactors, multistage extraction processes, and crystallization reactors. The results reveal performance gaps between RL algorithms and NMPC oracles, highlighting areas for improvement and enabling benchmarking. By providing a standardized platform, PC-Gym aims to accelerate research at the intersection of machine learning, control, and process systems engineering. Connecting RL with practical industrial process control applications, PC-Gym offers researchers a tool for exploring data-driven control solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信