两个耦合FitzHugh-Nagumo方程的同步和鸭翼

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Bruno F.F. Gonçalves , Isabel S. Labouriau , Alexandre A.P. Rodrigues
{"title":"两个耦合FitzHugh-Nagumo方程的同步和鸭翼","authors":"Bruno F.F. Gonçalves ,&nbsp;Isabel S. Labouriau ,&nbsp;Alexandre A.P. Rodrigues","doi":"10.1016/j.physd.2025.134853","DOIUrl":null,"url":null,"abstract":"<div><div>We describe the fast–slow dynamics of two FitzHugh–Nagumo equations coupled symmetrically through the slow equations. We use symmetry arguments to find a non-empty open set of parameter values for which the two equations synchronise, and another set with antisynchrony – where the solution of one equation is minus the solution of the other. By combining the dynamics within the synchrony and antisynchrony subspaces, we also obtain bistability – where these two types of solution coexist as hyperbolic attractors. They persist under small perturbation of the parameters. Canards are shown to give rise to mixed-mode oscillations. They also initiate small amplitude transient oscillations before the onset of large amplitude relaxation oscillations. We also discuss briefly the effect of asymmetric coupling, with periodic forcing of one of the equations by the other. We illustrate our results with numerical simulations.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134853"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrony and canards in two coupled FitzHugh–Nagumo equations\",\"authors\":\"Bruno F.F. Gonçalves ,&nbsp;Isabel S. Labouriau ,&nbsp;Alexandre A.P. Rodrigues\",\"doi\":\"10.1016/j.physd.2025.134853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We describe the fast–slow dynamics of two FitzHugh–Nagumo equations coupled symmetrically through the slow equations. We use symmetry arguments to find a non-empty open set of parameter values for which the two equations synchronise, and another set with antisynchrony – where the solution of one equation is minus the solution of the other. By combining the dynamics within the synchrony and antisynchrony subspaces, we also obtain bistability – where these two types of solution coexist as hyperbolic attractors. They persist under small perturbation of the parameters. Canards are shown to give rise to mixed-mode oscillations. They also initiate small amplitude transient oscillations before the onset of large amplitude relaxation oscillations. We also discuss briefly the effect of asymmetric coupling, with periodic forcing of one of the equations by the other. We illustrate our results with numerical simulations.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"482 \",\"pages\":\"Article 134853\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了两个FitzHugh-Nagumo方程通过慢速方程对称耦合的快慢动力学。我们使用对称参数来找到两个方程同步的参数值的非空开集,以及另一个具有反同步的集-其中一个方程的解减去另一个方程的解。通过结合同步子空间和反同步子空间内的动力学,我们也得到了双稳定性-其中这两种类型的解作为双曲吸引子共存。它们在参数的微小扰动下仍然存在。鸭翼可以引起混模振荡。它们在开始大振幅弛豫振荡之前也会引发小振幅瞬态振荡。我们还简要讨论了不对称耦合的影响,其中一个方程受另一个方程的周期性强迫。我们用数值模拟来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synchrony and canards in two coupled FitzHugh–Nagumo equations

Synchrony and canards in two coupled FitzHugh–Nagumo equations
We describe the fast–slow dynamics of two FitzHugh–Nagumo equations coupled symmetrically through the slow equations. We use symmetry arguments to find a non-empty open set of parameter values for which the two equations synchronise, and another set with antisynchrony – where the solution of one equation is minus the solution of the other. By combining the dynamics within the synchrony and antisynchrony subspaces, we also obtain bistability – where these two types of solution coexist as hyperbolic attractors. They persist under small perturbation of the parameters. Canards are shown to give rise to mixed-mode oscillations. They also initiate small amplitude transient oscillations before the onset of large amplitude relaxation oscillations. We also discuss briefly the effect of asymmetric coupling, with periodic forcing of one of the equations by the other. We illustrate our results with numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信