Co23.2Fe13.7Ni24.6Cr10.9Sn27.6高熵合金快速凝固共晶生长机制及显微组织:溶质阻力的影响

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yulong Liu , Yeqing Wang , Ke Fu , Xin Jiao , Liji Su , Ye Tian , Meng Liu , Quan Xu , Yuan Tong , Lei Xu , Changyun Li , Zheng Chen
{"title":"Co23.2Fe13.7Ni24.6Cr10.9Sn27.6高熵合金快速凝固共晶生长机制及显微组织:溶质阻力的影响","authors":"Yulong Liu ,&nbsp;Yeqing Wang ,&nbsp;Ke Fu ,&nbsp;Xin Jiao ,&nbsp;Liji Su ,&nbsp;Ye Tian ,&nbsp;Meng Liu ,&nbsp;Quan Xu ,&nbsp;Yuan Tong ,&nbsp;Lei Xu ,&nbsp;Changyun Li ,&nbsp;Zheng Chen","doi":"10.1016/j.intermet.2025.108983","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid solidification experiments on Co<sub>23.2</sub>Fe<sub>13.7</sub>Ni<sub>24.6</sub>Cr<sub>10.9</sub>Sn<sub>27.6</sub> eutectic high-entropy alloy (EHEA) were conducted by molten glass purification method and cyclic overheating techniques. Two solidification paths were identified. In the as-cast and low undercooling samples, the eutectic microstructure consisted of an FCC solid solution phase, M<sub>3</sub>Sn<sub>2</sub> (M = Co, Ni) compounds with an HCP structure and BCC precipitates. The BCC precipitates disappeared at high undercoolings. A remarkably slow growth kinetics hindered by solute drag was discovered. The maximum growth velocity of the anomalous eutectic was 0.5797 m s<sup>−1</sup>. Microstructural and quantitative elemental analyses indicate that the transition in eutectic growth mechanism is induced by the solute supersaturation with increasing undercooling. An orientation relationship (OR) of <span><math><mrow><msub><mrow><mo>&lt;</mo><mover><mn>1</mn><mo>‾</mo></mover><mn>01</mn><mover><mn>1</mn><mo>‾</mo></mover><mo>&gt;</mo></mrow><mtext>hcp</mtext></msub><mspace></mspace><mo>‖</mo><mspace></mspace><msub><mrow><mo>&lt;</mo><mn>100</mn><mo>&gt;</mo></mrow><mtext>bcc</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mrow><mo>{</mo><mn>21</mn></mrow><mover><mn>3</mn><mo>‾</mo></mover><mrow><mn>1</mn><mo>}</mo></mrow></mrow><mtext>hcp</mtext></msub><mspace></mspace><mo>‖</mo><mspace></mspace><msub><mrow><mo>{</mo><mn>100</mn><mo>}</mo></mrow><mtext>bcc</mtext></msub></mrow></math></span> was determined between M<sub>3</sub>Sn<sub>2</sub> (M = Co, Ni) compounds and BCC precipitates by transmission electron microscopy (TEM) analysis. Solute drag hinders the formation of the OR at the eutectic two phases, which is promoted by rapid solidification. Microhardness and uniaxial compression tests revealed that the increase in strength at low undercoolings was due to lamellar refinement. The anomalous eutectic structure exhibited low-stress brittle fracture, likely resulting from growth mechanism transition.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"187 ","pages":"Article 108983"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eutectic growth mechanism and microstructure of rapidly solidified Co23.2Fe13.7Ni24.6Cr10.9Sn27.6 high-entropy alloy: Effects of solute drag\",\"authors\":\"Yulong Liu ,&nbsp;Yeqing Wang ,&nbsp;Ke Fu ,&nbsp;Xin Jiao ,&nbsp;Liji Su ,&nbsp;Ye Tian ,&nbsp;Meng Liu ,&nbsp;Quan Xu ,&nbsp;Yuan Tong ,&nbsp;Lei Xu ,&nbsp;Changyun Li ,&nbsp;Zheng Chen\",\"doi\":\"10.1016/j.intermet.2025.108983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid solidification experiments on Co<sub>23.2</sub>Fe<sub>13.7</sub>Ni<sub>24.6</sub>Cr<sub>10.9</sub>Sn<sub>27.6</sub> eutectic high-entropy alloy (EHEA) were conducted by molten glass purification method and cyclic overheating techniques. Two solidification paths were identified. In the as-cast and low undercooling samples, the eutectic microstructure consisted of an FCC solid solution phase, M<sub>3</sub>Sn<sub>2</sub> (M = Co, Ni) compounds with an HCP structure and BCC precipitates. The BCC precipitates disappeared at high undercoolings. A remarkably slow growth kinetics hindered by solute drag was discovered. The maximum growth velocity of the anomalous eutectic was 0.5797 m s<sup>−1</sup>. Microstructural and quantitative elemental analyses indicate that the transition in eutectic growth mechanism is induced by the solute supersaturation with increasing undercooling. An orientation relationship (OR) of <span><math><mrow><msub><mrow><mo>&lt;</mo><mover><mn>1</mn><mo>‾</mo></mover><mn>01</mn><mover><mn>1</mn><mo>‾</mo></mover><mo>&gt;</mo></mrow><mtext>hcp</mtext></msub><mspace></mspace><mo>‖</mo><mspace></mspace><msub><mrow><mo>&lt;</mo><mn>100</mn><mo>&gt;</mo></mrow><mtext>bcc</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mrow><mo>{</mo><mn>21</mn></mrow><mover><mn>3</mn><mo>‾</mo></mover><mrow><mn>1</mn><mo>}</mo></mrow></mrow><mtext>hcp</mtext></msub><mspace></mspace><mo>‖</mo><mspace></mspace><msub><mrow><mo>{</mo><mn>100</mn><mo>}</mo></mrow><mtext>bcc</mtext></msub></mrow></math></span> was determined between M<sub>3</sub>Sn<sub>2</sub> (M = Co, Ni) compounds and BCC precipitates by transmission electron microscopy (TEM) analysis. Solute drag hinders the formation of the OR at the eutectic two phases, which is promoted by rapid solidification. Microhardness and uniaxial compression tests revealed that the increase in strength at low undercoolings was due to lamellar refinement. The anomalous eutectic structure exhibited low-stress brittle fracture, likely resulting from growth mechanism transition.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"187 \",\"pages\":\"Article 108983\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525003486\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003486","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用玻璃液净化法和循环过热技术对Co23.2Fe13.7Ni24.6Cr10.9Sn27.6共晶高熵合金(EHEA)进行了快速凝固实验。确定了两种凝固路径。铸态和低过冷态样品的共晶组织由FCC固溶相、HCP结构的M3Sn2 (M = Co, Ni)化合物和BCC析出相组成。高过冷时BCC沉淀消失。发现了一个非常缓慢的生长动力学,受到溶质阻力的阻碍。异常共晶的最大生长速度为0.5797 m s−1。显微组织和定量元素分析表明,随着过冷度的增加,溶质过饱和引起了共晶生长机制的转变。通过透射电子显微镜(TEM)分析,确定了M3Sn2 (M = Co, Ni)化合物与bcc沉淀之间存在<;1 - 011 - >hcp‖<100>;bcc和{213 - 1}hcp‖{100}bcc的取向关系(OR)。溶质阻力阻碍了共晶两相中OR的形成,而快速凝固促进了OR的形成。显微硬度和单轴压缩试验表明,低过冷时强度的增加是由于层状细化。异常共晶结构表现为低应力脆性断裂,可能是生长机制转变所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eutectic growth mechanism and microstructure of rapidly solidified Co23.2Fe13.7Ni24.6Cr10.9Sn27.6 high-entropy alloy: Effects of solute drag
Rapid solidification experiments on Co23.2Fe13.7Ni24.6Cr10.9Sn27.6 eutectic high-entropy alloy (EHEA) were conducted by molten glass purification method and cyclic overheating techniques. Two solidification paths were identified. In the as-cast and low undercooling samples, the eutectic microstructure consisted of an FCC solid solution phase, M3Sn2 (M = Co, Ni) compounds with an HCP structure and BCC precipitates. The BCC precipitates disappeared at high undercoolings. A remarkably slow growth kinetics hindered by solute drag was discovered. The maximum growth velocity of the anomalous eutectic was 0.5797 m s−1. Microstructural and quantitative elemental analyses indicate that the transition in eutectic growth mechanism is induced by the solute supersaturation with increasing undercooling. An orientation relationship (OR) of <1011>hcp<100>bcc and {2131}hcp{100}bcc was determined between M3Sn2 (M = Co, Ni) compounds and BCC precipitates by transmission electron microscopy (TEM) analysis. Solute drag hinders the formation of the OR at the eutectic two phases, which is promoted by rapid solidification. Microhardness and uniaxial compression tests revealed that the increase in strength at low undercoolings was due to lamellar refinement. The anomalous eutectic structure exhibited low-stress brittle fracture, likely resulting from growth mechanism transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信