Hadiseh Rezaei , Marjan Golmaryami , Hadis Rezaei , Francesco Palmieri
{"title":"一种轻量级的基于区块链的联邦自监督学习防御方法","authors":"Hadiseh Rezaei , Marjan Golmaryami , Hadis Rezaei , Francesco Palmieri","doi":"10.1016/j.future.2025.108092","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, deep learning technologies have experienced significant advancements, especially in the computer vision area. However, their success depends heavily on the availability of vast amounts of labeled data, introducing several data-gathering issues. To cope with these limitations, we use Federated Self-Supervised Learning (FedSSL), a framework that integrates Self-Supervised Learning (SSL) with Federated Learning (FL). FedSSL uses unlabeled data to enhance model performance and generalization without compromising data privacy. Despite its advantages, our research reveals vulnerabilities in FedSSL, such as susceptibility to model poisoning attacks. We introduce a Blockchain-based defense method for FedSSL (BCH-FedSSL) to face this risk, which incorporates blockchain technology to decentralize model aggregation, ensuring data integrity and transparency. Experimental results conducted under IID data distributions using the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets demonstrate that BCH-FedSSL’s effectiveness in maintaining model accuracy and robustness under adversarial conditions. The proposed method achieved, in the presence of a poisoning attack, a 30 % performance improvement on CIFAR-10, a 27 % on CIFAR-100, and a 31 % on Fashion-MNIST. This study highlights the potential of combining blockchain with federated learning to create secure, scalable, and efficient decentralized learning systems.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"175 ","pages":"Article 108092"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lightweight blockchain-based defense method for federated self-supervised learning\",\"authors\":\"Hadiseh Rezaei , Marjan Golmaryami , Hadis Rezaei , Francesco Palmieri\",\"doi\":\"10.1016/j.future.2025.108092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, deep learning technologies have experienced significant advancements, especially in the computer vision area. However, their success depends heavily on the availability of vast amounts of labeled data, introducing several data-gathering issues. To cope with these limitations, we use Federated Self-Supervised Learning (FedSSL), a framework that integrates Self-Supervised Learning (SSL) with Federated Learning (FL). FedSSL uses unlabeled data to enhance model performance and generalization without compromising data privacy. Despite its advantages, our research reveals vulnerabilities in FedSSL, such as susceptibility to model poisoning attacks. We introduce a Blockchain-based defense method for FedSSL (BCH-FedSSL) to face this risk, which incorporates blockchain technology to decentralize model aggregation, ensuring data integrity and transparency. Experimental results conducted under IID data distributions using the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets demonstrate that BCH-FedSSL’s effectiveness in maintaining model accuracy and robustness under adversarial conditions. The proposed method achieved, in the presence of a poisoning attack, a 30 % performance improvement on CIFAR-10, a 27 % on CIFAR-100, and a 31 % on Fashion-MNIST. This study highlights the potential of combining blockchain with federated learning to create secure, scalable, and efficient decentralized learning systems.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"175 \",\"pages\":\"Article 108092\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25003863\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25003863","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A lightweight blockchain-based defense method for federated self-supervised learning
In recent years, deep learning technologies have experienced significant advancements, especially in the computer vision area. However, their success depends heavily on the availability of vast amounts of labeled data, introducing several data-gathering issues. To cope with these limitations, we use Federated Self-Supervised Learning (FedSSL), a framework that integrates Self-Supervised Learning (SSL) with Federated Learning (FL). FedSSL uses unlabeled data to enhance model performance and generalization without compromising data privacy. Despite its advantages, our research reveals vulnerabilities in FedSSL, such as susceptibility to model poisoning attacks. We introduce a Blockchain-based defense method for FedSSL (BCH-FedSSL) to face this risk, which incorporates blockchain technology to decentralize model aggregation, ensuring data integrity and transparency. Experimental results conducted under IID data distributions using the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets demonstrate that BCH-FedSSL’s effectiveness in maintaining model accuracy and robustness under adversarial conditions. The proposed method achieved, in the presence of a poisoning attack, a 30 % performance improvement on CIFAR-10, a 27 % on CIFAR-100, and a 31 % on Fashion-MNIST. This study highlights the potential of combining blockchain with federated learning to create secure, scalable, and efficient decentralized learning systems.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.