用户视角的概念建模——从数据仓库到联盟驱动的数据生态系统

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sandra Geisler , Christoph Quix , István Koren , Matthias Jarke
{"title":"用户视角的概念建模——从数据仓库到联盟驱动的数据生态系统","authors":"Sandra Geisler ,&nbsp;Christoph Quix ,&nbsp;István Koren ,&nbsp;Matthias Jarke","doi":"10.1016/j.datak.2025.102502","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing complexity of modern information systems has highlighted the need for advanced conceptual modeling techniques that incorporate multi-perspective and view-based approaches. This paper explores the role of multi-perspective modeling and view modeling in designing distributed, heterogeneous systems while addressing diverse user requirements and ensuring semantic consistency. These methods enable the representation of multiple viewpoints, traceability, and dynamic integration across different levels of abstraction. Key advancements in schema mapping, view maintenance, and semantic metadata management are examined, illustrating how they support query optimization, data quality, and interoperability. We discuss how data management architectures, such as data ecosystems, data warehouses, and data lakes, leverage these innovations to enable flexible and sustainable data sharing. By integrating user-centric and goal-oriented modeling frameworks, the alignment of technical design with organizational and social requirements is emphasized. Future challenges include the need for enhanced reasoning capabilities and collaborative tools to manage the growing complexity of interconnected systems while maintaining adaptability and trust.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"161 ","pages":"Article 102502"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual modeling of user perspectives — From data warehouses to alliance-driven data ecosystems\",\"authors\":\"Sandra Geisler ,&nbsp;Christoph Quix ,&nbsp;István Koren ,&nbsp;Matthias Jarke\",\"doi\":\"10.1016/j.datak.2025.102502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing complexity of modern information systems has highlighted the need for advanced conceptual modeling techniques that incorporate multi-perspective and view-based approaches. This paper explores the role of multi-perspective modeling and view modeling in designing distributed, heterogeneous systems while addressing diverse user requirements and ensuring semantic consistency. These methods enable the representation of multiple viewpoints, traceability, and dynamic integration across different levels of abstraction. Key advancements in schema mapping, view maintenance, and semantic metadata management are examined, illustrating how they support query optimization, data quality, and interoperability. We discuss how data management architectures, such as data ecosystems, data warehouses, and data lakes, leverage these innovations to enable flexible and sustainable data sharing. By integrating user-centric and goal-oriented modeling frameworks, the alignment of technical design with organizational and social requirements is emphasized. Future challenges include the need for enhanced reasoning capabilities and collaborative tools to manage the growing complexity of interconnected systems while maintaining adaptability and trust.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"161 \",\"pages\":\"Article 102502\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X25000977\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000977","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现代信息系统的日益复杂突出了对先进的概念建模技术的需求,这些技术包括多视角和基于视图的方法。本文探讨了多角度建模和视图建模在设计分布式异构系统中的作用,同时满足不同的用户需求并确保语义一致性。这些方法支持跨不同抽象级别的多视点、可追溯性和动态集成的表示。研究了模式映射、视图维护和语义元数据管理方面的关键改进,说明了它们如何支持查询优化、数据质量和互操作性。我们将讨论数据管理架构(如数据生态系统、数据仓库和数据湖)如何利用这些创新来实现灵活和可持续的数据共享。通过集成以用户为中心和面向目标的建模框架,强调了技术设计与组织和社会需求的一致性。未来的挑战包括需要增强推理能力和协作工具来管理互联系统日益增长的复杂性,同时保持适应性和信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conceptual modeling of user perspectives — From data warehouses to alliance-driven data ecosystems
The increasing complexity of modern information systems has highlighted the need for advanced conceptual modeling techniques that incorporate multi-perspective and view-based approaches. This paper explores the role of multi-perspective modeling and view modeling in designing distributed, heterogeneous systems while addressing diverse user requirements and ensuring semantic consistency. These methods enable the representation of multiple viewpoints, traceability, and dynamic integration across different levels of abstraction. Key advancements in schema mapping, view maintenance, and semantic metadata management are examined, illustrating how they support query optimization, data quality, and interoperability. We discuss how data management architectures, such as data ecosystems, data warehouses, and data lakes, leverage these innovations to enable flexible and sustainable data sharing. By integrating user-centric and goal-oriented modeling frameworks, the alignment of technical design with organizational and social requirements is emphasized. Future challenges include the need for enhanced reasoning capabilities and collaborative tools to manage the growing complexity of interconnected systems while maintaining adaptability and trust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信