{"title":"一类非一致椭圆各向异性问题解的局部有界性","authors":"Stefano Biagi , Giovanni Cupini , Elvira Mascolo","doi":"10.1016/j.na.2025.113915","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a class of energy integrals, associated to nonlinear and non-uniformly elliptic equations, with integrands <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> satisfying anisotropic <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>q</mi></mrow></math></span>-growth conditions of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></math></span> for some exponents <span><math><mrow><mi>γ</mi><mo>≥</mo><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>, and non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113915"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local boundedness for solutions of a class of non-uniformly elliptic anisotropic problems\",\"authors\":\"Stefano Biagi , Giovanni Cupini , Elvira Mascolo\",\"doi\":\"10.1016/j.na.2025.113915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a class of energy integrals, associated to nonlinear and non-uniformly elliptic equations, with integrands <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> satisfying anisotropic <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>q</mi></mrow></math></span>-growth conditions of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></math></span> for some exponents <span><math><mrow><mi>γ</mi><mo>≥</mo><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>, and non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113915\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001695\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001695","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Local boundedness for solutions of a class of non-uniformly elliptic anisotropic problems
We consider a class of energy integrals, associated to nonlinear and non-uniformly elliptic equations, with integrands satisfying anisotropic -growth conditions of the form for some exponents , and non-negative functions subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.