一类非一致椭圆各向异性问题解的局部有界性

IF 1.3 2区 数学 Q1 MATHEMATICS
Stefano Biagi , Giovanni Cupini , Elvira Mascolo
{"title":"一类非一致椭圆各向异性问题解的局部有界性","authors":"Stefano Biagi ,&nbsp;Giovanni Cupini ,&nbsp;Elvira Mascolo","doi":"10.1016/j.na.2025.113915","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a class of energy integrals, associated to nonlinear and non-uniformly elliptic equations, with integrands <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> satisfying anisotropic <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>q</mi></mrow></math></span>-growth conditions of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></math></span> for some exponents <span><math><mrow><mi>γ</mi><mo>≥</mo><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, and non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113915"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local boundedness for solutions of a class of non-uniformly elliptic anisotropic problems\",\"authors\":\"Stefano Biagi ,&nbsp;Giovanni Cupini ,&nbsp;Elvira Mascolo\",\"doi\":\"10.1016/j.na.2025.113915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a class of energy integrals, associated to nonlinear and non-uniformly elliptic equations, with integrands <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> satisfying anisotropic <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>q</mi></mrow></math></span>-growth conditions of the form <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></math></span> for some exponents <span><math><mrow><mi>γ</mi><mo>≥</mo><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, and non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113915\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001695\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001695","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类与非线性非一致椭圆方程相关的能量积分,其积分f(x,u,ξ)满足各向异性pi,q的增长条件:∑i=1nλi(x)|ξi|pi≤f(x,u,ξ)≤μ(x)|ξ|q+|u|γ+1,对于某些指数γ≥q≥pi>;1,非负函数λi,μ服从适当的可和性假设。证明了这类积分的标量局部拟极小值的局部有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local boundedness for solutions of a class of non-uniformly elliptic anisotropic problems
We consider a class of energy integrals, associated to nonlinear and non-uniformly elliptic equations, with integrands f(x,u,ξ) satisfying anisotropic pi,q-growth conditions of the form i=1nλi(x)|ξi|pif(x,u,ξ)μ(x)|ξ|q+|u|γ+1 for some exponents γqpi>1, and non-negative functions λi,μ subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信