广义全纯函数的狄拉克函数

IF 1.3 2区 数学 Q1 MATHEMATICS
Sekar Nugraheni , Paolo Giordano
{"title":"广义全纯函数的狄拉克函数","authors":"Sekar Nugraheni ,&nbsp;Paolo Giordano","doi":"10.1016/j.na.2025.113921","DOIUrl":null,"url":null,"abstract":"<div><div>The definition of a non-trivial space of generalized functions of a complex variable allowing to consider derivatives of continuous functions is a non-obvious task, e.g. because of Morera theorem, because distributional Cauchy–Riemann equations implies holomorphicity and of course because including Dirac delta seems incompatible with the identity theorem. Surprisingly, these results can be achieved if we consider a suitable non-Archimedean extension of the complex field, i.e. a ring where infinitesimal and infinite numbers return to be available. In this first paper, we set the definition of generalized holomorphic function and prove the extension of several classical theorems, such as Cauchy–Riemann equations, Goursat, Looman–Menchoff and Montel theorems, generalized complex differentiability implies smoothness, embedding of distributions, closure with respect to composition and hence non-linear operations on these generalized functions. The theory hence addresses several limitations of Colombeau theory of generalized holomorphic functions. The final aim of this series of papers is to prove the Cauchy–Kowalevski theorem including also distributional PDE or singular boundary conditions and nonlinear operations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113921"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac delta as a generalized holomorphic function\",\"authors\":\"Sekar Nugraheni ,&nbsp;Paolo Giordano\",\"doi\":\"10.1016/j.na.2025.113921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The definition of a non-trivial space of generalized functions of a complex variable allowing to consider derivatives of continuous functions is a non-obvious task, e.g. because of Morera theorem, because distributional Cauchy–Riemann equations implies holomorphicity and of course because including Dirac delta seems incompatible with the identity theorem. Surprisingly, these results can be achieved if we consider a suitable non-Archimedean extension of the complex field, i.e. a ring where infinitesimal and infinite numbers return to be available. In this first paper, we set the definition of generalized holomorphic function and prove the extension of several classical theorems, such as Cauchy–Riemann equations, Goursat, Looman–Menchoff and Montel theorems, generalized complex differentiability implies smoothness, embedding of distributions, closure with respect to composition and hence non-linear operations on these generalized functions. The theory hence addresses several limitations of Colombeau theory of generalized holomorphic functions. The final aim of this series of papers is to prove the Cauchy–Kowalevski theorem including also distributional PDE or singular boundary conditions and nonlinear operations.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113921\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001750\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001750","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

定义一个允许考虑连续函数导数的复变量广义函数的非平凡空间是一项不明显的任务,例如,因为莫雷拉定理,因为分布柯西-黎曼方程意味着全纯,当然,因为包括狄拉克函数似乎与恒等定理不相容。令人惊讶的是,如果我们考虑复域的一个合适的非阿基米德扩展,即一个无限小和无限数返回可用的环,这些结果就可以实现。在第一篇论文中,我们给出了广义全纯函数的定义,并证明了几个经典定理的推广,如Cauchy-Riemann方程,Goursat定理,loman - menchoff定理和Montel定理,广义复可微性意味着光滑,分布的嵌入,关于复合的闭包以及对这些广义函数的非线性运算。因此,该理论解决了Colombeau广义全纯函数理论的几个局限性。本系列论文的最终目的是证明Cauchy-Kowalevski定理,该定理也包括分布偏微分方程或奇异边界条件和非线性运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirac delta as a generalized holomorphic function
The definition of a non-trivial space of generalized functions of a complex variable allowing to consider derivatives of continuous functions is a non-obvious task, e.g. because of Morera theorem, because distributional Cauchy–Riemann equations implies holomorphicity and of course because including Dirac delta seems incompatible with the identity theorem. Surprisingly, these results can be achieved if we consider a suitable non-Archimedean extension of the complex field, i.e. a ring where infinitesimal and infinite numbers return to be available. In this first paper, we set the definition of generalized holomorphic function and prove the extension of several classical theorems, such as Cauchy–Riemann equations, Goursat, Looman–Menchoff and Montel theorems, generalized complex differentiability implies smoothness, embedding of distributions, closure with respect to composition and hence non-linear operations on these generalized functions. The theory hence addresses several limitations of Colombeau theory of generalized holomorphic functions. The final aim of this series of papers is to prove the Cauchy–Kowalevski theorem including also distributional PDE or singular boundary conditions and nonlinear operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信