{"title":"一种快速、高效、鲁棒的特征保护去噪方法","authors":"Mengyu Luo, Jian Wang","doi":"10.1145/3765902","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast, efficient, and robust feature protected 3D mesh denoising method based on a modified Lengyel-Epstein (LE) model, primarily aiming to ensure volume stability and deliver superior denoising results. Compared with the original model, we mainly introduce a function expression <jats:italic toggle=\"yes\">ζ</jats:italic> ( <jats:italic toggle=\"yes\">X</jats:italic> ) to replace the fixed parameters. The modified model is then discretized using a seven-point difference scheme and solved by an explicit Euler method. Notably, our approach requires no training samples or upfront training time, significantly enhancing overall computational efficiency.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"3 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast, efficient, and robust feature protected denoising method\",\"authors\":\"Mengyu Luo, Jian Wang\",\"doi\":\"10.1145/3765902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast, efficient, and robust feature protected 3D mesh denoising method based on a modified Lengyel-Epstein (LE) model, primarily aiming to ensure volume stability and deliver superior denoising results. Compared with the original model, we mainly introduce a function expression <jats:italic toggle=\\\"yes\\\">ζ</jats:italic> ( <jats:italic toggle=\\\"yes\\\">X</jats:italic> ) to replace the fixed parameters. The modified model is then discretized using a seven-point difference scheme and solved by an explicit Euler method. Notably, our approach requires no training samples or upfront training time, significantly enhancing overall computational efficiency.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3765902\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3765902","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A fast, efficient, and robust feature protected denoising method
This paper proposes a fast, efficient, and robust feature protected 3D mesh denoising method based on a modified Lengyel-Epstein (LE) model, primarily aiming to ensure volume stability and deliver superior denoising results. Compared with the original model, we mainly introduce a function expression ζ ( X ) to replace the fixed parameters. The modified model is then discretized using a seven-point difference scheme and solved by an explicit Euler method. Notably, our approach requires no training samples or upfront training time, significantly enhancing overall computational efficiency.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.