从临床到云端:人工智能辅助远程监测植入式心脏装置患者的疗效。

IF 1.3
Pacing and clinical electrophysiology : PACE Pub Date : 2025-10-01 Epub Date: 2025-08-21 DOI:10.1111/pace.70036
Cheyenne S L Chiu, Willem Gerrits, Marco Guglielmo, Maarten J Cramer, Pim van der Harst, René van Es, Mathias Meine
{"title":"从临床到云端:人工智能辅助远程监测植入式心脏装置患者的疗效。","authors":"Cheyenne S L Chiu, Willem Gerrits, Marco Guglielmo, Maarten J Cramer, Pim van der Harst, René van Es, Mathias Meine","doi":"10.1111/pace.70036","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of telehealth, particularly remote monitoring (RM), has profoundly improved the care of patients with cardiac implantable electronic devices (CIEDs). The recent COVID-19 pandemic has further accelerated the adoption of RM systems. The implementation of RM to standard clinical care has been accompanied by a surge of device transmissions. Especially unscheduled transmissions have resulted in an overwhelming workload for clinicians. As the number of device transmissions is expected to increase further while clinical resources remain limited, workflow optimization is crucial. Artificial intelligence (AI) presents a promising solution. This review outlines recent advances in RM and AI applications for CIEDs. It explores the potential of AI to streamline RM workflows, reduce clinician workload, and enhance heart failure care by enabling early detection of clinical deterioration and timely intervention. In addition, key barriers to implementation are addressed, including data standardization and regulatory considerations. Beyond improving monitoring efficiency and patient outcomes, AI-supported RM may also help expand access to care through more effective resource allocation and contribute to a more sustainable, future-proof healthcare system.</p>","PeriodicalId":520740,"journal":{"name":"Pacing and clinical electrophysiology : PACE","volume":" ","pages":"1106-1113"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504922/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Clinic to Cloud: Efficacy of AI-Assisted Remote Monitoring of Patients With Implantable Cardiac Devices.\",\"authors\":\"Cheyenne S L Chiu, Willem Gerrits, Marco Guglielmo, Maarten J Cramer, Pim van der Harst, René van Es, Mathias Meine\",\"doi\":\"10.1111/pace.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of telehealth, particularly remote monitoring (RM), has profoundly improved the care of patients with cardiac implantable electronic devices (CIEDs). The recent COVID-19 pandemic has further accelerated the adoption of RM systems. The implementation of RM to standard clinical care has been accompanied by a surge of device transmissions. Especially unscheduled transmissions have resulted in an overwhelming workload for clinicians. As the number of device transmissions is expected to increase further while clinical resources remain limited, workflow optimization is crucial. Artificial intelligence (AI) presents a promising solution. This review outlines recent advances in RM and AI applications for CIEDs. It explores the potential of AI to streamline RM workflows, reduce clinician workload, and enhance heart failure care by enabling early detection of clinical deterioration and timely intervention. In addition, key barriers to implementation are addressed, including data standardization and regulatory considerations. Beyond improving monitoring efficiency and patient outcomes, AI-supported RM may also help expand access to care through more effective resource allocation and contribute to a more sustainable, future-proof healthcare system.</p>\",\"PeriodicalId\":520740,\"journal\":{\"name\":\"Pacing and clinical electrophysiology : PACE\",\"volume\":\" \",\"pages\":\"1106-1113\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacing and clinical electrophysiology : PACE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/pace.70036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacing and clinical electrophysiology : PACE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/pace.70036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

远程医疗的整合,特别是远程监测(RM),极大地改善了对心脏植入式电子装置(cied)患者的护理。最近的COVID-19大流行进一步加快了RM系统的采用。RM标准临床护理的实施伴随着设备传输的激增。特别是计划外的传输给临床医生带来了巨大的工作量。由于预计设备传输数量将进一步增加,而临床资源仍然有限,因此工作流程优化至关重要。人工智能(AI)提供了一个很有前途的解决方案。本文概述了人工智能在cied中应用的最新进展。它探索了人工智能的潜力,通过早期发现临床恶化和及时干预,简化RM工作流程,减少临床医生的工作量,并加强心力衰竭护理。此外,还解决了实施的主要障碍,包括数据标准化和监管方面的考虑。除了提高监测效率和患者结果外,人工智能支持的RM还可以通过更有效的资源分配来帮助扩大获得护理的机会,并有助于建立一个更可持续、面向未来的医疗保健系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Clinic to Cloud: Efficacy of AI-Assisted Remote Monitoring of Patients With Implantable Cardiac Devices.

The integration of telehealth, particularly remote monitoring (RM), has profoundly improved the care of patients with cardiac implantable electronic devices (CIEDs). The recent COVID-19 pandemic has further accelerated the adoption of RM systems. The implementation of RM to standard clinical care has been accompanied by a surge of device transmissions. Especially unscheduled transmissions have resulted in an overwhelming workload for clinicians. As the number of device transmissions is expected to increase further while clinical resources remain limited, workflow optimization is crucial. Artificial intelligence (AI) presents a promising solution. This review outlines recent advances in RM and AI applications for CIEDs. It explores the potential of AI to streamline RM workflows, reduce clinician workload, and enhance heart failure care by enabling early detection of clinical deterioration and timely intervention. In addition, key barriers to implementation are addressed, including data standardization and regulatory considerations. Beyond improving monitoring efficiency and patient outcomes, AI-supported RM may also help expand access to care through more effective resource allocation and contribute to a more sustainable, future-proof healthcare system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信