Austin Naylor, Maximilian Libmann, Izabel Raab, Wouter-Jan Rappel, Bo Sun
{"title":"表型和组织空间的耦合动力学塑造了三维癌症侵袭。","authors":"Austin Naylor, Maximilian Libmann, Izabel Raab, Wouter-Jan Rappel, Bo Sun","doi":"10.1103/prxlife.2.043022","DOIUrl":null,"url":null,"abstract":"<p><p>The metastasis of solid tumors hinges on cancer cells navigating through complex three-dimensional tissue environments, characterized by mechanical heterogeneity and biological diversity. This process is closely linked to the dynamic migration behavior exhibited by cancer cells, which dictates the invasiveness of tumors. In our study, we investigate tumor spheroids composed of breast cancer cells embedded in three-dimensional (3D) collagen matrices. Through a combination of quantitative experiments, artificial-intelligence-driven image processing, and mathematical modeling, we uncover rapid transitions in cell phenotypes and phenotype-dependent motility among disseminating cells originating from tumor spheroids. Persistent invasion leads to continuous remodeling of the extracellular matrix surrounding the spheroids, altering the landscape of migration phenotypes. Consequently, filopodial cells emerge as the predominant phenotype across diverse extracellular matrix conditions. Our findings unveil the complex mesoscale dynamics of invading tumor spheroids, shedding light on the complex interplay between migration phenotype plasticity, microenvironment remodeling, and cell motility within 3D extracellular matrices.</p>","PeriodicalId":520261,"journal":{"name":"PRX life","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coupled Dynamics in Phenotype and Tissue Spaces Shape the Three-Dimensional Cancer Invasion.\",\"authors\":\"Austin Naylor, Maximilian Libmann, Izabel Raab, Wouter-Jan Rappel, Bo Sun\",\"doi\":\"10.1103/prxlife.2.043022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metastasis of solid tumors hinges on cancer cells navigating through complex three-dimensional tissue environments, characterized by mechanical heterogeneity and biological diversity. This process is closely linked to the dynamic migration behavior exhibited by cancer cells, which dictates the invasiveness of tumors. In our study, we investigate tumor spheroids composed of breast cancer cells embedded in three-dimensional (3D) collagen matrices. Through a combination of quantitative experiments, artificial-intelligence-driven image processing, and mathematical modeling, we uncover rapid transitions in cell phenotypes and phenotype-dependent motility among disseminating cells originating from tumor spheroids. Persistent invasion leads to continuous remodeling of the extracellular matrix surrounding the spheroids, altering the landscape of migration phenotypes. Consequently, filopodial cells emerge as the predominant phenotype across diverse extracellular matrix conditions. Our findings unveil the complex mesoscale dynamics of invading tumor spheroids, shedding light on the complex interplay between migration phenotype plasticity, microenvironment remodeling, and cell motility within 3D extracellular matrices.</p>\",\"PeriodicalId\":520261,\"journal\":{\"name\":\"PRX life\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxlife.2.043022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.2.043022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Coupled Dynamics in Phenotype and Tissue Spaces Shape the Three-Dimensional Cancer Invasion.
The metastasis of solid tumors hinges on cancer cells navigating through complex three-dimensional tissue environments, characterized by mechanical heterogeneity and biological diversity. This process is closely linked to the dynamic migration behavior exhibited by cancer cells, which dictates the invasiveness of tumors. In our study, we investigate tumor spheroids composed of breast cancer cells embedded in three-dimensional (3D) collagen matrices. Through a combination of quantitative experiments, artificial-intelligence-driven image processing, and mathematical modeling, we uncover rapid transitions in cell phenotypes and phenotype-dependent motility among disseminating cells originating from tumor spheroids. Persistent invasion leads to continuous remodeling of the extracellular matrix surrounding the spheroids, altering the landscape of migration phenotypes. Consequently, filopodial cells emerge as the predominant phenotype across diverse extracellular matrix conditions. Our findings unveil the complex mesoscale dynamics of invading tumor spheroids, shedding light on the complex interplay between migration phenotype plasticity, microenvironment remodeling, and cell motility within 3D extracellular matrices.