Shixuan Zheng, Harry M Georgiou, Maria I Kokkinos, Katrina M Mirabito Colafella, Shaun P Brennecke, Bill Kalionis
{"title":"细胞外囊泡治疗人类妊娠障碍的治疗潜力。","authors":"Shixuan Zheng, Harry M Georgiou, Maria I Kokkinos, Katrina M Mirabito Colafella, Shaun P Brennecke, Bill Kalionis","doi":"10.20517/evcna.2025.07","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnancy complications such as preeclampsia and fetal growth restriction are major global health concerns, contributing to significant maternal and fetal morbidity and mortality. These disorders also increase the long-term risk of cardiovascular, metabolic, and kidney diseases in both mother and child. Accumulating evidence highlights the important role of placental mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) in both healthy and pathological pregnancies. In healthy pregnancies, EVs support placental development and maternal-fetal communication. In contrast, EVs from diseased placentas can contribute to pregnancy complications. Importantly, EVs from healthy placental MSCs show promise as novel, cell-free therapies. They offer advantages over whole-cell therapies, including lower immunogenicity, no risk of replication, and easier storage and delivery. This review explores the role of placental MSC-derived EVs in pregnancy disorders, preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, and discusses their potential as targeted therapeutics. It also examines the future of bioengineered EVs and the challenges that must be addressed to bring EV-based therapies into clinical practice.</p>","PeriodicalId":520322,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"6 2","pages":"287-309"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Therapeutic potential of extracellular vesicles for treating human pregnancy disorders.\",\"authors\":\"Shixuan Zheng, Harry M Georgiou, Maria I Kokkinos, Katrina M Mirabito Colafella, Shaun P Brennecke, Bill Kalionis\",\"doi\":\"10.20517/evcna.2025.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pregnancy complications such as preeclampsia and fetal growth restriction are major global health concerns, contributing to significant maternal and fetal morbidity and mortality. These disorders also increase the long-term risk of cardiovascular, metabolic, and kidney diseases in both mother and child. Accumulating evidence highlights the important role of placental mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) in both healthy and pathological pregnancies. In healthy pregnancies, EVs support placental development and maternal-fetal communication. In contrast, EVs from diseased placentas can contribute to pregnancy complications. Importantly, EVs from healthy placental MSCs show promise as novel, cell-free therapies. They offer advantages over whole-cell therapies, including lower immunogenicity, no risk of replication, and easier storage and delivery. This review explores the role of placental MSC-derived EVs in pregnancy disorders, preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, and discusses their potential as targeted therapeutics. It also examines the future of bioengineered EVs and the challenges that must be addressed to bring EV-based therapies into clinical practice.</p>\",\"PeriodicalId\":520322,\"journal\":{\"name\":\"Extracellular vesicles and circulating nucleic acids\",\"volume\":\"6 2\",\"pages\":\"287-309\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracellular vesicles and circulating nucleic acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/evcna.2025.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2025.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Therapeutic potential of extracellular vesicles for treating human pregnancy disorders.
Pregnancy complications such as preeclampsia and fetal growth restriction are major global health concerns, contributing to significant maternal and fetal morbidity and mortality. These disorders also increase the long-term risk of cardiovascular, metabolic, and kidney diseases in both mother and child. Accumulating evidence highlights the important role of placental mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) in both healthy and pathological pregnancies. In healthy pregnancies, EVs support placental development and maternal-fetal communication. In contrast, EVs from diseased placentas can contribute to pregnancy complications. Importantly, EVs from healthy placental MSCs show promise as novel, cell-free therapies. They offer advantages over whole-cell therapies, including lower immunogenicity, no risk of replication, and easier storage and delivery. This review explores the role of placental MSC-derived EVs in pregnancy disorders, preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, and discusses their potential as targeted therapeutics. It also examines the future of bioengineered EVs and the challenges that must be addressed to bring EV-based therapies into clinical practice.