刺突突变影响最近的kp .3.1.1样SARS-CoV-2变体的功能和抗原性

Bernadeta Dadonaite, Sheri Harari, Brendan B Larsen, Lucas Kampman, Alex Harteloo, Anna Elias-Warren, Helen Y Chu, Jesse D Bloom
{"title":"刺突突变影响最近的kp .3.1.1样SARS-CoV-2变体的功能和抗原性","authors":"Bernadeta Dadonaite, Sheri Harari, Brendan B Larsen, Lucas Kampman, Alex Harteloo, Anna Elias-Warren, Helen Y Chu, Jesse D Bloom","doi":"10.1101/2025.08.18.671001","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 is under strong evolutionary selection to acquire mutations in its spike protein that reduce neutralization by human polyclonal antibodies. Here we use pseudovirus-based deep mutational scanning to measure how mutations to the spike from the recent KP.3.1.1 SARS-CoV-2 strain affect cell entry, binding to ACE2 receptor, RBD up/down motion, and neutralization by human sera and clinically relevant antibodies. The spike mutations that most affect serum antibody neutralization sometimes differ between sera collected before versus after recent vaccination or infection, indicating these exposures shift the neutralization immunodominance hierarchy. The sites where mutations cause the greatest reduction in neutralization by post-vaccination or infection sera include receptor-binding domain (RBD) sites 475, 478 and 487, all of which have mutated in recent SARS-CoV-2 variants. Multiple mutations outside the RBD affect sera neutralization as strongly as any RBD mutations by modulating RBD up/down movement. Some sites that affect RBD up/down movement have mutated in recent SARS-CoV-2 variants. Finally, we measure how spike mutations affect neutralization by three clinically relevant SARS-CoV-2 antibodies: VYD222, BD55-1205, and SA55. Overall, these results illuminate the current constraints and pressures shaping SARS-CoV-2 evolution, and can help with efforts to forecast possible future antigenic changes that may impact vaccines or clinical antibodies.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spike mutations that affect the function and antigenicity of recent KP.3.1.1-like SARS-CoV-2 variants.\",\"authors\":\"Bernadeta Dadonaite, Sheri Harari, Brendan B Larsen, Lucas Kampman, Alex Harteloo, Anna Elias-Warren, Helen Y Chu, Jesse D Bloom\",\"doi\":\"10.1101/2025.08.18.671001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SARS-CoV-2 is under strong evolutionary selection to acquire mutations in its spike protein that reduce neutralization by human polyclonal antibodies. Here we use pseudovirus-based deep mutational scanning to measure how mutations to the spike from the recent KP.3.1.1 SARS-CoV-2 strain affect cell entry, binding to ACE2 receptor, RBD up/down motion, and neutralization by human sera and clinically relevant antibodies. The spike mutations that most affect serum antibody neutralization sometimes differ between sera collected before versus after recent vaccination or infection, indicating these exposures shift the neutralization immunodominance hierarchy. The sites where mutations cause the greatest reduction in neutralization by post-vaccination or infection sera include receptor-binding domain (RBD) sites 475, 478 and 487, all of which have mutated in recent SARS-CoV-2 variants. Multiple mutations outside the RBD affect sera neutralization as strongly as any RBD mutations by modulating RBD up/down movement. Some sites that affect RBD up/down movement have mutated in recent SARS-CoV-2 variants. Finally, we measure how spike mutations affect neutralization by three clinically relevant SARS-CoV-2 antibodies: VYD222, BD55-1205, and SA55. Overall, these results illuminate the current constraints and pressures shaping SARS-CoV-2 evolution, and can help with efforts to forecast possible future antigenic changes that may impact vaccines or clinical antibodies.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.08.18.671001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.08.18.671001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2在强大的进化选择下获得刺突蛋白突变,从而减少了人多克隆抗体的中和作用。在这里,我们使用基于假病毒的深度突变扫描来测量最近的KP.3.1.1 SARS-CoV-2毒株刺突突变如何影响细胞进入、与ACE2受体结合、RBD上下运动以及被人血清和临床相关抗体中和。影响血清抗体中和的刺突突变有时在最近接种疫苗或感染前与感染后收集的血清中有所不同,这表明这些暴露改变了中和免疫优势等级。突变导致疫苗接种后或感染血清中和作用最大减少的位点包括受体结合结构域(RBD)位点475、478和487,所有这些位点在最近的SARS-CoV-2变体中都发生了突变。RBD外的多个突变通过调节RBD的上下运动,对血清中和的影响与任何RBD突变一样强烈。一些影响RBD上下运动的位点在最近的SARS-CoV-2变体中发生了突变。最后,我们测量了刺突突变如何影响三种临床相关的SARS-CoV-2抗体:VYD222、BD55-1205和SA55的中和作用。总体而言,这些结果阐明了影响SARS-CoV-2进化的当前制约因素和压力,并有助于预测未来可能影响疫苗或临床抗体的抗原变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spike mutations that affect the function and antigenicity of recent KP.3.1.1-like SARS-CoV-2 variants.

SARS-CoV-2 is under strong evolutionary selection to acquire mutations in its spike protein that reduce neutralization by human polyclonal antibodies. Here we use pseudovirus-based deep mutational scanning to measure how mutations to the spike from the recent KP.3.1.1 SARS-CoV-2 strain affect cell entry, binding to ACE2 receptor, RBD up/down motion, and neutralization by human sera and clinically relevant antibodies. The spike mutations that most affect serum antibody neutralization sometimes differ between sera collected before versus after recent vaccination or infection, indicating these exposures shift the neutralization immunodominance hierarchy. The sites where mutations cause the greatest reduction in neutralization by post-vaccination or infection sera include receptor-binding domain (RBD) sites 475, 478 and 487, all of which have mutated in recent SARS-CoV-2 variants. Multiple mutations outside the RBD affect sera neutralization as strongly as any RBD mutations by modulating RBD up/down movement. Some sites that affect RBD up/down movement have mutated in recent SARS-CoV-2 variants. Finally, we measure how spike mutations affect neutralization by three clinically relevant SARS-CoV-2 antibodies: VYD222, BD55-1205, and SA55. Overall, these results illuminate the current constraints and pressures shaping SARS-CoV-2 evolution, and can help with efforts to forecast possible future antigenic changes that may impact vaccines or clinical antibodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信