计算机断层扫描灌注影响脑容量的鲁棒量化:一种结合深度学习和奇异值分解的混合方法。

Gi-Youn Kim, Hyeon Sik Yang, Jundong Hwang, Kijeong Lee, Jin Wook Choi, Woo Sang Jung, Regina Eun Young Kim, Donghyeon Kim, Minho Lee
{"title":"计算机断层扫描灌注影响脑容量的鲁棒量化:一种结合深度学习和奇异值分解的混合方法。","authors":"Gi-Youn Kim, Hyeon Sik Yang, Jundong Hwang, Kijeong Lee, Jin Wook Choi, Woo Sang Jung, Regina Eun Young Kim, Donghyeon Kim, Minho Lee","doi":"10.1007/s10278-025-01612-5","DOIUrl":null,"url":null,"abstract":"<p><p>Volumetric estimation of affected brain volumes using computed tomography perfusion (CTP) is crucial in the management of acute ischemic stroke (AIS) and relies on commercial software, which has limitations such as variations in results due to image quality. To predict affected brain volume accurately and robustly, we propose a hybrid approach that integrates singular value decomposition (SVD), deep learning (DL), and machine learning (ML) techniques. We included 449 CTP images of patients with AIS with manually annotated vessel landmarks provided by expert radiologists, collected between 2021 and 2023. We developed a CNN-based approach for predicting eight vascular landmarks from CTP images, integrating ML components. We then used SVD-related methods to generate perfusion maps and compared the results with those of the RapidAI software (RapidAI, Menlo Park, California). The proposed CNN model achieved an average Euclidean distance error of 4.63 <math><mo>±</mo></math> 2.00 mm on the vessel localization. Without the ML components, compared to RapidAI, our method yielded concordance correlation coefficient (CCC) scores of 0.898 for estimating volumes with cerebral blood flow (CBF) < 30% and 0.715 for Tmax > 6 s. Using the ML method, it achieved CCC scores of 0.905 for CBF < 30% and 0.879 for Tmax > 6 s. For the data assessment, it achieved 0.8 accuracy. We developed a robust hybrid model combining DL and ML techniques for volumetric estimation of affected brain volumes using CTP in patients with AIS, demonstrating improved accuracy and robustness compared to existing commercial solutions.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Quantification of Affected Brain Volume from Computed Tomography Perfusion: A Hybrid Approach Combining Deep Learning and Singular Value Decomposition.\",\"authors\":\"Gi-Youn Kim, Hyeon Sik Yang, Jundong Hwang, Kijeong Lee, Jin Wook Choi, Woo Sang Jung, Regina Eun Young Kim, Donghyeon Kim, Minho Lee\",\"doi\":\"10.1007/s10278-025-01612-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volumetric estimation of affected brain volumes using computed tomography perfusion (CTP) is crucial in the management of acute ischemic stroke (AIS) and relies on commercial software, which has limitations such as variations in results due to image quality. To predict affected brain volume accurately and robustly, we propose a hybrid approach that integrates singular value decomposition (SVD), deep learning (DL), and machine learning (ML) techniques. We included 449 CTP images of patients with AIS with manually annotated vessel landmarks provided by expert radiologists, collected between 2021 and 2023. We developed a CNN-based approach for predicting eight vascular landmarks from CTP images, integrating ML components. We then used SVD-related methods to generate perfusion maps and compared the results with those of the RapidAI software (RapidAI, Menlo Park, California). The proposed CNN model achieved an average Euclidean distance error of 4.63 <math><mo>±</mo></math> 2.00 mm on the vessel localization. Without the ML components, compared to RapidAI, our method yielded concordance correlation coefficient (CCC) scores of 0.898 for estimating volumes with cerebral blood flow (CBF) < 30% and 0.715 for Tmax > 6 s. Using the ML method, it achieved CCC scores of 0.905 for CBF < 30% and 0.879 for Tmax > 6 s. For the data assessment, it achieved 0.8 accuracy. We developed a robust hybrid model combining DL and ML techniques for volumetric estimation of affected brain volumes using CTP in patients with AIS, demonstrating improved accuracy and robustness compared to existing commercial solutions.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01612-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01612-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用计算机断层扫描灌注(CTP)对受影响的脑容量进行体积估计在急性缺血性卒中(AIS)的治疗中至关重要,并且依赖于商业软件,这些软件具有局限性,例如由于图像质量而导致结果的变化。为了准确而稳健地预测受影响的脑容量,我们提出了一种集成了奇异值分解(SVD)、深度学习(DL)和机器学习(ML)技术的混合方法。我们纳入了449张AIS患者的CTP图像,这些图像由放射科专家提供,带有手动注释的血管地标,收集于2021年至2023年之间。我们开发了一种基于cnn的方法,用于从CTP图像中预测8个血管地标,整合ML组件。然后,我们使用svd相关方法生成灌注图,并将结果与RapidAI软件(RapidAI, Menlo Park, California)的结果进行比较。本文提出的CNN模型在血管定位上的平均欧氏距离误差为4.63±2.00 mm。在没有ML成分的情况下,与RapidAI相比,我们的方法在估计脑血流量(CBF) 6 s时的一致性相关系数(CCC)得分为0.898。使用ML方法,cbf6 s的CCC得分为0.905。对于数据评估,准确率达到0.8。我们开发了一种结合DL和ML技术的鲁棒混合模型,用于使用CTP对AIS患者的受影响脑容量进行体积估计,与现有的商业解决方案相比,显示出更高的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Quantification of Affected Brain Volume from Computed Tomography Perfusion: A Hybrid Approach Combining Deep Learning and Singular Value Decomposition.

Volumetric estimation of affected brain volumes using computed tomography perfusion (CTP) is crucial in the management of acute ischemic stroke (AIS) and relies on commercial software, which has limitations such as variations in results due to image quality. To predict affected brain volume accurately and robustly, we propose a hybrid approach that integrates singular value decomposition (SVD), deep learning (DL), and machine learning (ML) techniques. We included 449 CTP images of patients with AIS with manually annotated vessel landmarks provided by expert radiologists, collected between 2021 and 2023. We developed a CNN-based approach for predicting eight vascular landmarks from CTP images, integrating ML components. We then used SVD-related methods to generate perfusion maps and compared the results with those of the RapidAI software (RapidAI, Menlo Park, California). The proposed CNN model achieved an average Euclidean distance error of 4.63 ± 2.00 mm on the vessel localization. Without the ML components, compared to RapidAI, our method yielded concordance correlation coefficient (CCC) scores of 0.898 for estimating volumes with cerebral blood flow (CBF) < 30% and 0.715 for Tmax > 6 s. Using the ML method, it achieved CCC scores of 0.905 for CBF < 30% and 0.879 for Tmax > 6 s. For the data assessment, it achieved 0.8 accuracy. We developed a robust hybrid model combining DL and ML techniques for volumetric estimation of affected brain volumes using CTP in patients with AIS, demonstrating improved accuracy and robustness compared to existing commercial solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信