多区域多参数深度学习放射组学用于临床意义前列腺癌的诊断。

Xijun Liu, Rongzong Liu, Haihao He, Yifei Yan, Limin Zhang, Qi Zhang
{"title":"多区域多参数深度学习放射组学用于临床意义前列腺癌的诊断。","authors":"Xijun Liu, Rongzong Liu, Haihao He, Yifei Yan, Limin Zhang, Qi Zhang","doi":"10.1007/s10278-025-01551-1","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive and precise identification of clinically significant prostate cancer (csPCa) is essential for the management of prostatic diseases. Our study introduces a novel and interpretable diagnostic method for csPCa, leveraging multi-regional, multiparametric deep learning radiomics based on magnetic resonance imaging (MRI). The prostate regions, including the peripheral zone (PZ) and transition zone (TZ), are automatically segmented using a deep learning framework that combines convolutional neural networks and transformers to generate region-specific masks. Radiomics features are then extracted and selected from multiparametric MRI at the PZ, TZ, and their combined area to develop a multi-regional multiparametric radiomics diagnostic model. Feature contributions are quantified to enhance the model's interpretability and assess the importance of different imaging parameters across various regions. The multi-regional model substantially outperforms single-region models, achieving an optimal area under the curve (AUC) of 0.903 on the internal test set, and an AUC of 0.881 on the external test set. Comparison with other methods demonstrates that our proposed approach exhibits superior performance. Features from diffusion-weighted imaging and apparent diffusion coefficient play a crucial role in csPCa diagnosis, with contribution degrees of 53.28% and 39.52%, respectively. We introduce an interpretable, multi-regional, multiparametric diagnostic model for csPCa using deep learning radiomics. By integrating features from various zones, our model improves diagnostic accuracy and provides clear insights into the key imaging parameters, offering strong potential for clinical applications in csPCa management.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-regional Multiparametric Deep Learning Radiomics for Diagnosis of Clinically Significant Prostate Cancer.\",\"authors\":\"Xijun Liu, Rongzong Liu, Haihao He, Yifei Yan, Limin Zhang, Qi Zhang\",\"doi\":\"10.1007/s10278-025-01551-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-invasive and precise identification of clinically significant prostate cancer (csPCa) is essential for the management of prostatic diseases. Our study introduces a novel and interpretable diagnostic method for csPCa, leveraging multi-regional, multiparametric deep learning radiomics based on magnetic resonance imaging (MRI). The prostate regions, including the peripheral zone (PZ) and transition zone (TZ), are automatically segmented using a deep learning framework that combines convolutional neural networks and transformers to generate region-specific masks. Radiomics features are then extracted and selected from multiparametric MRI at the PZ, TZ, and their combined area to develop a multi-regional multiparametric radiomics diagnostic model. Feature contributions are quantified to enhance the model's interpretability and assess the importance of different imaging parameters across various regions. The multi-regional model substantially outperforms single-region models, achieving an optimal area under the curve (AUC) of 0.903 on the internal test set, and an AUC of 0.881 on the external test set. Comparison with other methods demonstrates that our proposed approach exhibits superior performance. Features from diffusion-weighted imaging and apparent diffusion coefficient play a crucial role in csPCa diagnosis, with contribution degrees of 53.28% and 39.52%, respectively. We introduce an interpretable, multi-regional, multiparametric diagnostic model for csPCa using deep learning radiomics. By integrating features from various zones, our model improves diagnostic accuracy and provides clear insights into the key imaging parameters, offering strong potential for clinical applications in csPCa management.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01551-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01551-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无创和精确识别临床显著性前列腺癌(csPCa)对于前列腺疾病的治疗至关重要。我们的研究介绍了一种新的、可解释的csPCa诊断方法,利用基于磁共振成像(MRI)的多区域、多参数深度学习放射组学。前列腺区域,包括外围区(PZ)和过渡区(TZ),使用深度学习框架自动分割,该框架结合了卷积神经网络和变压器来生成特定区域的掩模。然后从PZ, TZ及其组合区域的多参数MRI中提取和选择放射组学特征,以开发多区域多参数放射组学诊断模型。特征贡献被量化,以增强模型的可解释性,并评估不同区域不同成像参数的重要性。多区域模型大大优于单区域模型,在内部测试集上实现了最优曲线下面积(AUC) 0.903,在外部测试集上实现了最优曲线下面积(AUC) 0.881。与其他方法的比较表明,我们提出的方法具有更好的性能。弥散加权成像特征和表观弥散系数对csPCa的诊断至关重要,贡献度分别为53.28%和39.52%。我们使用深度学习放射组学为csPCa引入了一个可解释的、多区域的、多参数的诊断模型。通过整合不同区域的特征,我们的模型提高了诊断的准确性,并提供了对关键成像参数的清晰见解,为csPCa管理的临床应用提供了强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-regional Multiparametric Deep Learning Radiomics for Diagnosis of Clinically Significant Prostate Cancer.

Non-invasive and precise identification of clinically significant prostate cancer (csPCa) is essential for the management of prostatic diseases. Our study introduces a novel and interpretable diagnostic method for csPCa, leveraging multi-regional, multiparametric deep learning radiomics based on magnetic resonance imaging (MRI). The prostate regions, including the peripheral zone (PZ) and transition zone (TZ), are automatically segmented using a deep learning framework that combines convolutional neural networks and transformers to generate region-specific masks. Radiomics features are then extracted and selected from multiparametric MRI at the PZ, TZ, and their combined area to develop a multi-regional multiparametric radiomics diagnostic model. Feature contributions are quantified to enhance the model's interpretability and assess the importance of different imaging parameters across various regions. The multi-regional model substantially outperforms single-region models, achieving an optimal area under the curve (AUC) of 0.903 on the internal test set, and an AUC of 0.881 on the external test set. Comparison with other methods demonstrates that our proposed approach exhibits superior performance. Features from diffusion-weighted imaging and apparent diffusion coefficient play a crucial role in csPCa diagnosis, with contribution degrees of 53.28% and 39.52%, respectively. We introduce an interpretable, multi-regional, multiparametric diagnostic model for csPCa using deep learning radiomics. By integrating features from various zones, our model improves diagnostic accuracy and provides clear insights into the key imaging parameters, offering strong potential for clinical applications in csPCa management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信