深度学习和基础模型嵌入在膝关节x线片骨关节炎特征分类中的比较评价。

Mohammadreza Chavoshi, Hari Trivedi, Janice Newsome, Aawez Mansuri, Frank Li, Theo Dapamede, Bardia Khosravi, Judy Gichoya
{"title":"深度学习和基础模型嵌入在膝关节x线片骨关节炎特征分类中的比较评价。","authors":"Mohammadreza Chavoshi, Hari Trivedi, Janice Newsome, Aawez Mansuri, Frank Li, Theo Dapamede, Bardia Khosravi, Judy Gichoya","doi":"10.1007/s10278-025-01636-x","DOIUrl":null,"url":null,"abstract":"<p><p>Foundation models (FM) offer a promising alternative to supervised deep learning (DL) by enabling greater flexibility and generalizability without relying on large, labeled datasets. This study investigates the performance of supervised DL models and pre-trained FM embeddings in classifying radiographic features related to knee osteoarthritis. We analyzed 44,985 knee radiographs from the Osteoarthritis Initiative dataset. Two convolutional neural network models (ResNet18 and ConvNeXt-Small) were trained to classify osteophytes, joint space narrowing, subchondral sclerosis, and Kellgren-Lawrence grades (KLG). These models were compared against two FM: BiomedCLIP, a multimodal vision-language model pre-trained on diverse medical images and text, and RAD-DINO vision transformer model pre-trained exclusively on chest radiographs. We extracted image embeddings from both FMs and used XGBoost classifiers to perform downstream classification. Performance was assessed using a comprehensive classification metrics appropriate for binary and multi-class classification tasks. DL models outperformed FM-based approaches across all tasks. ConvNeXt achieved the highest performance in predicting KLG, with a weighted Cohen's kappa of 0.880 and higher AUC in binary tasks. BiomedCLIP and RAD-DINO performed similarly, and BiomedCLIP's prior exposure to knee radiographs during pretraining led to only slight improvements. Zero-shot classification using BiomedCLIP correctly identified 91.14% of knee radiographs, with most failures associated with low image quality. Grad-CAM visualizations revealed DL models, particularly ConvNeXt, reliably focused on clinically relevant regions. While FMs offer promising utility in auxiliary imaging tasks, supervised DL remains superior for fine-grained radiographic feature classification in domains with limited pretraining representation, such as musculoskeletal imaging.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of Deep Learning and Foundation Model Embeddings for Osteoarthritis Feature Classification in Knee Radiographs.\",\"authors\":\"Mohammadreza Chavoshi, Hari Trivedi, Janice Newsome, Aawez Mansuri, Frank Li, Theo Dapamede, Bardia Khosravi, Judy Gichoya\",\"doi\":\"10.1007/s10278-025-01636-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Foundation models (FM) offer a promising alternative to supervised deep learning (DL) by enabling greater flexibility and generalizability without relying on large, labeled datasets. This study investigates the performance of supervised DL models and pre-trained FM embeddings in classifying radiographic features related to knee osteoarthritis. We analyzed 44,985 knee radiographs from the Osteoarthritis Initiative dataset. Two convolutional neural network models (ResNet18 and ConvNeXt-Small) were trained to classify osteophytes, joint space narrowing, subchondral sclerosis, and Kellgren-Lawrence grades (KLG). These models were compared against two FM: BiomedCLIP, a multimodal vision-language model pre-trained on diverse medical images and text, and RAD-DINO vision transformer model pre-trained exclusively on chest radiographs. We extracted image embeddings from both FMs and used XGBoost classifiers to perform downstream classification. Performance was assessed using a comprehensive classification metrics appropriate for binary and multi-class classification tasks. DL models outperformed FM-based approaches across all tasks. ConvNeXt achieved the highest performance in predicting KLG, with a weighted Cohen's kappa of 0.880 and higher AUC in binary tasks. BiomedCLIP and RAD-DINO performed similarly, and BiomedCLIP's prior exposure to knee radiographs during pretraining led to only slight improvements. Zero-shot classification using BiomedCLIP correctly identified 91.14% of knee radiographs, with most failures associated with low image quality. Grad-CAM visualizations revealed DL models, particularly ConvNeXt, reliably focused on clinically relevant regions. While FMs offer promising utility in auxiliary imaging tasks, supervised DL remains superior for fine-grained radiographic feature classification in domains with limited pretraining representation, such as musculoskeletal imaging.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01636-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01636-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基础模型(FM)通过在不依赖大型标记数据集的情况下提供更大的灵活性和泛化性,为监督深度学习(DL)提供了一个有希望的替代方案。本研究探讨了监督DL模型和预训练FM嵌入在分类与膝骨关节炎相关的放射学特征方面的表现。我们分析了来自骨关节炎倡议数据集的44,985张膝关节x线片。两个卷积神经网络模型(ResNet18和ConvNeXt-Small)被训练用于分类骨肿、关节间隙狭窄、软骨下硬化和Kellgren-Lawrence分级(KLG)。将这些模型与两种FM进行比较:BiomedCLIP是一种针对多种医学图像和文本进行预训练的多模态视觉语言模型,而RAD-DINO是专门针对胸片进行预训练的视觉转换模型。我们从两个fm中提取图像嵌入,并使用XGBoost分类器进行下游分类。使用适合二进制和多类分类任务的综合分类指标评估性能。在所有任务中,深度学习模型都优于基于神经网络的方法。ConvNeXt在预测KLG方面取得了最高的表现,加权Cohen’s kappa为0.880,在二元任务中AUC更高。BiomedCLIP和RAD-DINO表现相似,并且在预训练期间,BiomedCLIP预先暴露于膝关节x线片仅导致轻微改善。使用生物医学clip进行零射击分类正确识别了91.14%的膝关节x线片,其中大多数失败与低图像质量有关。Grad-CAM可视化显示DL模型,特别是ConvNeXt,可靠地集中在临床相关区域。虽然FMs在辅助成像任务中有很好的应用前景,但在预训练表征有限的领域(如肌肉骨骼成像),监督DL在细粒度放射学特征分类方面仍然优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Evaluation of Deep Learning and Foundation Model Embeddings for Osteoarthritis Feature Classification in Knee Radiographs.

Foundation models (FM) offer a promising alternative to supervised deep learning (DL) by enabling greater flexibility and generalizability without relying on large, labeled datasets. This study investigates the performance of supervised DL models and pre-trained FM embeddings in classifying radiographic features related to knee osteoarthritis. We analyzed 44,985 knee radiographs from the Osteoarthritis Initiative dataset. Two convolutional neural network models (ResNet18 and ConvNeXt-Small) were trained to classify osteophytes, joint space narrowing, subchondral sclerosis, and Kellgren-Lawrence grades (KLG). These models were compared against two FM: BiomedCLIP, a multimodal vision-language model pre-trained on diverse medical images and text, and RAD-DINO vision transformer model pre-trained exclusively on chest radiographs. We extracted image embeddings from both FMs and used XGBoost classifiers to perform downstream classification. Performance was assessed using a comprehensive classification metrics appropriate for binary and multi-class classification tasks. DL models outperformed FM-based approaches across all tasks. ConvNeXt achieved the highest performance in predicting KLG, with a weighted Cohen's kappa of 0.880 and higher AUC in binary tasks. BiomedCLIP and RAD-DINO performed similarly, and BiomedCLIP's prior exposure to knee radiographs during pretraining led to only slight improvements. Zero-shot classification using BiomedCLIP correctly identified 91.14% of knee radiographs, with most failures associated with low image quality. Grad-CAM visualizations revealed DL models, particularly ConvNeXt, reliably focused on clinically relevant regions. While FMs offer promising utility in auxiliary imaging tasks, supervised DL remains superior for fine-grained radiographic feature classification in domains with limited pretraining representation, such as musculoskeletal imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信