心电综合与效用分析——基于扩散模型的方法。

Sanketa Hegde, Merten Prüser, Nikola Cenic, Anatol Bollinger, Marie Arens, Jan Köhlen, Eimo Martens, Christoph Dieterich
{"title":"心电综合与效用分析——基于扩散模型的方法。","authors":"Sanketa Hegde, Merten Prüser, Nikola Cenic, Anatol Bollinger, Marie Arens, Jan Köhlen, Eimo Martens, Christoph Dieterich","doi":"10.3233/SHTI251414","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With the growing demand for privacy-preserving healthcare solutions, the generation of synthetic electrocardiograms (ECGs) offers a valuable alternative to using real patient data.</p><p><strong>Methods: </strong>In this study, we present the adaptation of the SSSD-ECG diffusion model to generate high-quality synthetic 12-lead ECGs for Sinus Rhythm/Normal and Atrial Fibrillation (AF) conditions using 10-second recordings from the 12-lead MIMIC-IV ECG dataset.</p><p><strong>Results: </strong>We validate the utility of the generated ECGs through downstream classification tasks, with models trained on synthetic ECG features achieving an F1-score of 0.80 when tested on real data, and 0.91 when trained on real data and tested on synthetic data. Additionally, blind tests conducted by physicians at two university hospital sites demonstrated that the synthetic signals effectively mimic real ECGs in both morphology and key features.</p><p><strong>Conclusion: </strong>This work establishes diffusion-based models as an effective tool for generating realistic synthetic ECGs, providing valuable resources for model development, supporting testing of clinical decision- making solutions, and enabling research in contexts where real data is scarce or not shareable.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"331 ","pages":"346-356"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG Synthesis and Utility Analysis - A Diffusion Model Based Approach.\",\"authors\":\"Sanketa Hegde, Merten Prüser, Nikola Cenic, Anatol Bollinger, Marie Arens, Jan Köhlen, Eimo Martens, Christoph Dieterich\",\"doi\":\"10.3233/SHTI251414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>With the growing demand for privacy-preserving healthcare solutions, the generation of synthetic electrocardiograms (ECGs) offers a valuable alternative to using real patient data.</p><p><strong>Methods: </strong>In this study, we present the adaptation of the SSSD-ECG diffusion model to generate high-quality synthetic 12-lead ECGs for Sinus Rhythm/Normal and Atrial Fibrillation (AF) conditions using 10-second recordings from the 12-lead MIMIC-IV ECG dataset.</p><p><strong>Results: </strong>We validate the utility of the generated ECGs through downstream classification tasks, with models trained on synthetic ECG features achieving an F1-score of 0.80 when tested on real data, and 0.91 when trained on real data and tested on synthetic data. Additionally, blind tests conducted by physicians at two university hospital sites demonstrated that the synthetic signals effectively mimic real ECGs in both morphology and key features.</p><p><strong>Conclusion: </strong>This work establishes diffusion-based models as an effective tool for generating realistic synthetic ECGs, providing valuable resources for model development, supporting testing of clinical decision- making solutions, and enabling research in contexts where real data is scarce or not shareable.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"331 \",\"pages\":\"346-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导论:随着对隐私保护医疗保健解决方案的需求不断增长,合成心电图(ecg)的生成为使用真实患者数据提供了一个有价值的替代方案。方法:在本研究中,我们采用SSSD-ECG扩散模型,利用12导联MIMIC-IV心电图数据集的10秒记录,为窦性心律/正常和心房颤动(AF)条件生成高质量的合成12导联心电图。结果:我们通过下游分类任务验证了生成的ECG的效用,在合成ECG特征上训练的模型在真实数据上测试时获得了0.80分的f1分,在真实数据上训练并在合成数据上测试时获得了0.91分。此外,由两所大学医院的医生进行的盲测表明,合成信号在形态和关键特征上都有效地模仿了真实的心电图。结论:这项工作建立了基于扩散的模型,作为生成真实合成心电图的有效工具,为模型开发提供了宝贵的资源,支持临床决策解决方案的测试,并使真实数据稀缺或不可共享的环境下的研究成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG Synthesis and Utility Analysis - A Diffusion Model Based Approach.

Introduction: With the growing demand for privacy-preserving healthcare solutions, the generation of synthetic electrocardiograms (ECGs) offers a valuable alternative to using real patient data.

Methods: In this study, we present the adaptation of the SSSD-ECG diffusion model to generate high-quality synthetic 12-lead ECGs for Sinus Rhythm/Normal and Atrial Fibrillation (AF) conditions using 10-second recordings from the 12-lead MIMIC-IV ECG dataset.

Results: We validate the utility of the generated ECGs through downstream classification tasks, with models trained on synthetic ECG features achieving an F1-score of 0.80 when tested on real data, and 0.91 when trained on real data and tested on synthetic data. Additionally, blind tests conducted by physicians at two university hospital sites demonstrated that the synthetic signals effectively mimic real ECGs in both morphology and key features.

Conclusion: This work establishes diffusion-based models as an effective tool for generating realistic synthetic ECGs, providing valuable resources for model development, supporting testing of clinical decision- making solutions, and enabling research in contexts where real data is scarce or not shareable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信