用AUCMEDI对AMi-Br有丝分裂图数据集进行分类。

Daniel Hieber, Friederike Lische-Starnecker, Johannes Schobel, Rüdiger Pryss, Frank Kramer, Dominik Müller
{"title":"用AUCMEDI对AMi-Br有丝分裂图数据集进行分类。","authors":"Daniel Hieber, Friederike Lische-Starnecker, Johannes Schobel, Rüdiger Pryss, Frank Kramer, Dominik Müller","doi":"10.3233/SHTI251413","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mitotic figure (MF) density has been established as a key biomarker for certain tumors. Recently, the differentiation between atypical MFs (AMF) and normal MFs (NMFs) has gained increased interest in research, as AMFs density could be an independent biomarker. This results in the challenge of finding an automated, deterministic way to differentiate between AMFs and NMFs.</p><p><strong>Methods: </strong>In this study, the AUCMEDI deep learning framework is applied to the recently published AMi-Br dataset to get a first bearing on the complexity of the task at hand. The dataset includes eight mitotic subclasses derived from breast cancer samples, four for NMFs and four for AMF. Using a patient-level cross- validation strategy and a ConvNeXt-based ensemble, we trained and evaluated an eight-class subtype classification model.</p><p><strong>Results: </strong>Our results show high specificity across all classes (≥ 90%), but sensitivity varies significantly between mitotic subclasses (0-82%), reflecting the dataset's inherent challenges. The mean AUC of 85.90% outperforms the binary classification baseline (69.8%).</p><p><strong>Conclusion: </strong>The results highlight the promise of progress in subclass-level mitotic analysis while pointing to areas for further model refinement.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"331 ","pages":"339-345"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying the AMi-Br Mitotic Figure Dataset with AUCMEDI.\",\"authors\":\"Daniel Hieber, Friederike Lische-Starnecker, Johannes Schobel, Rüdiger Pryss, Frank Kramer, Dominik Müller\",\"doi\":\"10.3233/SHTI251413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Mitotic figure (MF) density has been established as a key biomarker for certain tumors. Recently, the differentiation between atypical MFs (AMF) and normal MFs (NMFs) has gained increased interest in research, as AMFs density could be an independent biomarker. This results in the challenge of finding an automated, deterministic way to differentiate between AMFs and NMFs.</p><p><strong>Methods: </strong>In this study, the AUCMEDI deep learning framework is applied to the recently published AMi-Br dataset to get a first bearing on the complexity of the task at hand. The dataset includes eight mitotic subclasses derived from breast cancer samples, four for NMFs and four for AMF. Using a patient-level cross- validation strategy and a ConvNeXt-based ensemble, we trained and evaluated an eight-class subtype classification model.</p><p><strong>Results: </strong>Our results show high specificity across all classes (≥ 90%), but sensitivity varies significantly between mitotic subclasses (0-82%), reflecting the dataset's inherent challenges. The mean AUC of 85.90% outperforms the binary classification baseline (69.8%).</p><p><strong>Conclusion: </strong>The results highlight the promise of progress in subclass-level mitotic analysis while pointing to areas for further model refinement.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"331 \",\"pages\":\"339-345\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有丝分裂图(Mitotic figure, MF)密度已被确定为某些肿瘤的关键生物标志物。近年来,非典型骨髓基质瘤(AMF)和正常骨髓基质瘤(NMFs)之间的差异引起了越来越多的研究兴趣,因为骨髓基质瘤密度可能是一个独立的生物标志物。这就带来了寻找一种自动化的、确定的方法来区分amf和nmf的挑战。方法:在本研究中,AUCMEDI深度学习框架应用于最近发布的AMi-Br数据集,以获得手头任务复杂性的第一个影响。该数据集包括来自乳腺癌样本的8个有丝分裂亚类,其中4个为NMFs, 4个为AMF。使用患者水平交叉验证策略和基于convnext的集成,我们训练并评估了一个八类亚型分类模型。结果:我们的结果在所有类别中都显示出高特异性(≥90%),但有丝分裂亚类之间的敏感性差异显著(0-82%),反映了数据集的固有挑战。平均AUC为85.90%,优于二元分类基线(69.8%)。结论:结果突出了亚类水平有丝分裂分析的进展前景,同时指出了进一步改进模型的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying the AMi-Br Mitotic Figure Dataset with AUCMEDI.

Introduction: Mitotic figure (MF) density has been established as a key biomarker for certain tumors. Recently, the differentiation between atypical MFs (AMF) and normal MFs (NMFs) has gained increased interest in research, as AMFs density could be an independent biomarker. This results in the challenge of finding an automated, deterministic way to differentiate between AMFs and NMFs.

Methods: In this study, the AUCMEDI deep learning framework is applied to the recently published AMi-Br dataset to get a first bearing on the complexity of the task at hand. The dataset includes eight mitotic subclasses derived from breast cancer samples, four for NMFs and four for AMF. Using a patient-level cross- validation strategy and a ConvNeXt-based ensemble, we trained and evaluated an eight-class subtype classification model.

Results: Our results show high specificity across all classes (≥ 90%), but sensitivity varies significantly between mitotic subclasses (0-82%), reflecting the dataset's inherent challenges. The mean AUC of 85.90% outperforms the binary classification baseline (69.8%).

Conclusion: The results highlight the promise of progress in subclass-level mitotic analysis while pointing to areas for further model refinement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信