提示是所有你需要的-直到它不是:探索法学硕士的限制阴性检测在德国临床文本。

Richard Zowalla, Martin Wiesner
{"title":"提示是所有你需要的-直到它不是:探索法学硕士的限制阴性检测在德国临床文本。","authors":"Richard Zowalla, Martin Wiesner","doi":"10.3233/SHTI251374","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Detecting negations in clinical text is crucial for accurate documentation and decision-making.</p><p><strong>Methods: </strong>This study assesses open-source Large Language Models (LLMs) for detecting negations in German clinical discharge letters, comparing them to the rule-based approach (GeNeg) and human annotations.</p><p><strong>Results: </strong>While Llama 3.3 and Deepseek-R1 (70B) showed slight accuracy improvements, their high computational costs limit practicality compared to GeNeg. Llama 3.3 achieved the highest accuracy (.9670) and F1-score (.9620), outperforming all other models and slightly exceeding GeNeg in accuracy and F1-score. However, it required significantly more computational time (5.9 sec/sent) when compared to GeNeg's processing time (.005 sec/sent).</p><p><strong>Conclusion: </strong>The study results suggest hybrid approaches combining rule-based efficiency paired with LLMs' linguistic capabilities. In addition, future work should therefore optimize prompts and integrate LLMs with traditional methods to balance accuracy and efficiency.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"331 ","pages":"5-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompting Is All You Need - Until It Isn't: Exploring the Limits of LLMs for Negation Detection in German Clinical Text.\",\"authors\":\"Richard Zowalla, Martin Wiesner\",\"doi\":\"10.3233/SHTI251374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Detecting negations in clinical text is crucial for accurate documentation and decision-making.</p><p><strong>Methods: </strong>This study assesses open-source Large Language Models (LLMs) for detecting negations in German clinical discharge letters, comparing them to the rule-based approach (GeNeg) and human annotations.</p><p><strong>Results: </strong>While Llama 3.3 and Deepseek-R1 (70B) showed slight accuracy improvements, their high computational costs limit practicality compared to GeNeg. Llama 3.3 achieved the highest accuracy (.9670) and F1-score (.9620), outperforming all other models and slightly exceeding GeNeg in accuracy and F1-score. However, it required significantly more computational time (5.9 sec/sent) when compared to GeNeg's processing time (.005 sec/sent).</p><p><strong>Conclusion: </strong>The study results suggest hybrid approaches combining rule-based efficiency paired with LLMs' linguistic capabilities. In addition, future work should therefore optimize prompts and integrate LLMs with traditional methods to balance accuracy and efficiency.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"331 \",\"pages\":\"5-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在临床文本中检测否定对于准确的文档和决策是至关重要的。方法:本研究评估了开源大型语言模型(LLMs)用于检测德语临床出院信中的否定,并将其与基于规则的方法(GeNeg)和人工注释进行比较。结果:虽然Llama 3.3和Deepseek-R1 (70B)的准确性略有提高,但与GeNeg相比,它们的高计算成本限制了实用性。羊驼3.3获得了最高的准确率(0.9670)和f1得分(0.96)。9620),优于所有其他模型,在准确性和f1分数上略高于geng。然而,与GeNeg的处理时间(5.9秒/发送)相比,它需要更多的计算时间(5.9秒/发送)。005秒/发送)。结论:研究结果建议将基于规则的效率与法学硕士的语言能力相结合的混合方法。此外,未来的工作应优化提示,并将llm与传统方法相结合,以平衡准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prompting Is All You Need - Until It Isn't: Exploring the Limits of LLMs for Negation Detection in German Clinical Text.

Introduction: Detecting negations in clinical text is crucial for accurate documentation and decision-making.

Methods: This study assesses open-source Large Language Models (LLMs) for detecting negations in German clinical discharge letters, comparing them to the rule-based approach (GeNeg) and human annotations.

Results: While Llama 3.3 and Deepseek-R1 (70B) showed slight accuracy improvements, their high computational costs limit practicality compared to GeNeg. Llama 3.3 achieved the highest accuracy (.9670) and F1-score (.9620), outperforming all other models and slightly exceeding GeNeg in accuracy and F1-score. However, it required significantly more computational time (5.9 sec/sent) when compared to GeNeg's processing time (.005 sec/sent).

Conclusion: The study results suggest hybrid approaches combining rule-based efficiency paired with LLMs' linguistic capabilities. In addition, future work should therefore optimize prompts and integrate LLMs with traditional methods to balance accuracy and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信