从CD4+和CD8+细胞PET显像模拟联合免疫治疗对同基因小鼠三阴性乳腺癌的影响。

IF 1.5
Dayton J Syme, Angelica A Davenport, Yun Lu, Anna G Sorace, N G Cogan
{"title":"从CD4+和CD8+细胞PET显像模拟联合免疫治疗对同基因小鼠三阴性乳腺癌的影响。","authors":"Dayton J Syme, Angelica A Davenport, Yun Lu, Anna G Sorace, N G Cogan","doi":"10.1093/imammb/dqaf009","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a system of ordinary differential equations to model the mouse immune response of two key immune cell types (CD4+ and CD8+ cells) to an established triple-negative breast cancer tumor while being treated with immunotherapy drugs of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors. The model incorporates longitudinal positron emission tomography image data from a series of experiments where immunotherapy treatment was given in combination or separately. Control data optimization estimates the immune-tumor response of a general mouse burdened with breast cancer. Collaborative input designated the location of treatment effects thatwere further parameterized. The results indicate quantifiable differences in parameter values that differentiate immunotherapy responder and nonresponder groups. Treatment parameters are first determined from single and then from combination immunotherapy data. Structural identifiability is used to classify the identifiability of the parameters, while Sobol sensitivity analysis is employed to narrow the key treatment interactions of the model. From the constrained treatment model, we can accurately predict tumor volume changes for most treatment data, which strengthens our methodology while highlighting key interactions.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Effects of Combination Immunotherapy on Triple-Negative Breast Cancer in Syngeneic Mice from PET Imaging of CD4+ and CD8+ Cells.\",\"authors\":\"Dayton J Syme, Angelica A Davenport, Yun Lu, Anna G Sorace, N G Cogan\",\"doi\":\"10.1093/imammb/dqaf009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a system of ordinary differential equations to model the mouse immune response of two key immune cell types (CD4+ and CD8+ cells) to an established triple-negative breast cancer tumor while being treated with immunotherapy drugs of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors. The model incorporates longitudinal positron emission tomography image data from a series of experiments where immunotherapy treatment was given in combination or separately. Control data optimization estimates the immune-tumor response of a general mouse burdened with breast cancer. Collaborative input designated the location of treatment effects thatwere further parameterized. The results indicate quantifiable differences in parameter values that differentiate immunotherapy responder and nonresponder groups. Treatment parameters are first determined from single and then from combination immunotherapy data. Structural identifiability is used to classify the identifiability of the parameters, while Sobol sensitivity analysis is employed to narrow the key treatment interactions of the model. From the constrained treatment model, we can accurately predict tumor volume changes for most treatment data, which strengthens our methodology while highlighting key interactions.</p>\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqaf009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqaf009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个常微分方程系统来模拟两种关键免疫细胞类型(CD4+和CD8+细胞)对已建立的三阴性乳腺癌肿瘤的免疫反应,同时使用抗pd -1和抗ctla -4免疫检查点抑制剂的免疫治疗药物。该模型结合了纵向正电子发射断层扫描图像数据,这些数据来自一系列实验,其中免疫治疗联合或单独给予。控制数据优化估计一般小鼠负担乳腺癌的免疫肿瘤反应。协同输入指定了进一步参数化的治疗效果的位置。结果表明区分免疫治疗应答组和非应答组的参数值的可量化差异。治疗参数首先从单一免疫治疗数据确定,然后从联合免疫治疗数据确定。结构可识别性用于对参数的可识别性进行分类,而Sobol敏感性分析用于缩小模型的关键处理相互作用。从约束治疗模型中,我们可以准确地预测大多数治疗数据的肿瘤体积变化,这加强了我们的方法,同时突出了关键的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Effects of Combination Immunotherapy on Triple-Negative Breast Cancer in Syngeneic Mice from PET Imaging of CD4+ and CD8+ Cells.

We propose a system of ordinary differential equations to model the mouse immune response of two key immune cell types (CD4+ and CD8+ cells) to an established triple-negative breast cancer tumor while being treated with immunotherapy drugs of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors. The model incorporates longitudinal positron emission tomography image data from a series of experiments where immunotherapy treatment was given in combination or separately. Control data optimization estimates the immune-tumor response of a general mouse burdened with breast cancer. Collaborative input designated the location of treatment effects thatwere further parameterized. The results indicate quantifiable differences in parameter values that differentiate immunotherapy responder and nonresponder groups. Treatment parameters are first determined from single and then from combination immunotherapy data. Structural identifiability is used to classify the identifiability of the parameters, while Sobol sensitivity analysis is employed to narrow the key treatment interactions of the model. From the constrained treatment model, we can accurately predict tumor volume changes for most treatment data, which strengthens our methodology while highlighting key interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信