MedImg:公共医学图像集成数据库。

IF 7.9
Bitao Zhong, Rui Fan, Yue Ma, Xiangwen Ji, Qinghua Cui, Chunmei Cui
{"title":"MedImg:公共医学图像集成数据库。","authors":"Bitao Zhong, Rui Fan, Yue Ma, Xiangwen Ji, Qinghua Cui, Chunmei Cui","doi":"10.1093/gpbjnl/qzaf068","DOIUrl":null,"url":null,"abstract":"<p><p>The advancements in deep learning algorithms for medical image analysis have garnered significant attention in recent years. While several studies show promising results, with models achieving or even surpassing human performance, translating these advancements into clinical practice is still accompanied by various challenges. A primary obstacle lies in the availability of large-scale, well-characterized datasets for validating the generalization of approaches. To address this challenge, we curated a diverse collection of medical image datasets from multiple public sources, containing 105 datasets and a total of 1,995,671 images. These images span 14 modalities, including X-ray, computed tomography, magnetic resonance imaging, optical coherence tomography, ultrasound, and endoscopy, and originate from 13 organs, such as the lung, brain, eye, and heart. Subsequently, we constructed an online database, MedImg, which incorporates and systematically organizes these medical images to facilitate data accessibility. MedImg serves as an intuitive and open-access platform for facilitating research in deep learning-based medical image analysis, accessible at https://www.cuilab.cn/medimg/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MedImg: An Integrated Database for Public Medical Image.\",\"authors\":\"Bitao Zhong, Rui Fan, Yue Ma, Xiangwen Ji, Qinghua Cui, Chunmei Cui\",\"doi\":\"10.1093/gpbjnl/qzaf068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancements in deep learning algorithms for medical image analysis have garnered significant attention in recent years. While several studies show promising results, with models achieving or even surpassing human performance, translating these advancements into clinical practice is still accompanied by various challenges. A primary obstacle lies in the availability of large-scale, well-characterized datasets for validating the generalization of approaches. To address this challenge, we curated a diverse collection of medical image datasets from multiple public sources, containing 105 datasets and a total of 1,995,671 images. These images span 14 modalities, including X-ray, computed tomography, magnetic resonance imaging, optical coherence tomography, ultrasound, and endoscopy, and originate from 13 organs, such as the lung, brain, eye, and heart. Subsequently, we constructed an online database, MedImg, which incorporates and systematically organizes these medical images to facilitate data accessibility. MedImg serves as an intuitive and open-access platform for facilitating research in deep learning-based medical image analysis, accessible at https://www.cuilab.cn/medimg/.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzaf068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,医学图像分析中深度学习算法的进步引起了人们的极大关注。虽然一些研究显示出有希望的结果,模型达到甚至超过了人类的表现,但将这些进步转化为临床实践仍然伴随着各种挑战。主要障碍在于验证方法泛化的大规模、特征良好的数据集的可用性。为了应对这一挑战,我们从多个公共来源策划了一个不同的医学图像数据集,包含105个数据集和总共1,995,671张图像。这些图像跨越14种方式,包括x射线、计算机断层扫描、磁共振成像、光学相干断层扫描、超声波和内窥镜检查,来自13个器官,如肺、脑、眼和心。随后,我们构建了一个在线数据库MedImg,将这些医学图像整合并系统地组织起来,以方便数据的可访问性。MedImg是一个直观的开放访问平台,用于促进基于深度学习的医学图像分析研究,可访问https://www.cuilab.cn/medimg/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MedImg: An Integrated Database for Public Medical Image.

The advancements in deep learning algorithms for medical image analysis have garnered significant attention in recent years. While several studies show promising results, with models achieving or even surpassing human performance, translating these advancements into clinical practice is still accompanied by various challenges. A primary obstacle lies in the availability of large-scale, well-characterized datasets for validating the generalization of approaches. To address this challenge, we curated a diverse collection of medical image datasets from multiple public sources, containing 105 datasets and a total of 1,995,671 images. These images span 14 modalities, including X-ray, computed tomography, magnetic resonance imaging, optical coherence tomography, ultrasound, and endoscopy, and originate from 13 organs, such as the lung, brain, eye, and heart. Subsequently, we constructed an online database, MedImg, which incorporates and systematically organizes these medical images to facilitate data accessibility. MedImg serves as an intuitive and open-access platform for facilitating research in deep learning-based medical image analysis, accessible at https://www.cuilab.cn/medimg/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信