CausalChat:使用大型语言模型开发和改进交互式因果模型。

IF 6.5
Yanming Zhang, Akshith Kota, Eric Papenhausen, Klaus Mueller
{"title":"CausalChat:使用大型语言模型开发和改进交互式因果模型。","authors":"Yanming Zhang, Akshith Kota, Eric Papenhausen, Klaus Mueller","doi":"10.1109/TVCG.2025.3602448","DOIUrl":null,"url":null,"abstract":"<p><p>Causal networks are widely used in many fields to model the complex relationships between variables. A recent approach has sought to construct causal networks by leveraging the wisdom of crowds through the collective participation of humans. While this can yield detailed causal networks that model the underlying phenomena quite well, it requires a large number of individuals with domain understanding. We adopt a different approach: leveraging the causal knowledge that large language models, such as OpenAI's GPT-4, have learned by ingesting massive amounts of literature. Within a dedicated visual analytics interface, called CausalChat, users explore single variables or variable pairs recursively to identify causal relations, latent variables, confounders, and mediators, constructing detailed causal networks through conversation. Each probing interaction is translated into a tailored GPT-4 prompt and the response is conveyed through visual representations which are linked to the generated text for explanations. We demonstrate the functionality of CausalChat across diverse data contexts and conduct user studies involving both domain experts and laypersons.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CausalChat: Interactive Causal Model Development and Refinement Using Large Language Models.\",\"authors\":\"Yanming Zhang, Akshith Kota, Eric Papenhausen, Klaus Mueller\",\"doi\":\"10.1109/TVCG.2025.3602448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Causal networks are widely used in many fields to model the complex relationships between variables. A recent approach has sought to construct causal networks by leveraging the wisdom of crowds through the collective participation of humans. While this can yield detailed causal networks that model the underlying phenomena quite well, it requires a large number of individuals with domain understanding. We adopt a different approach: leveraging the causal knowledge that large language models, such as OpenAI's GPT-4, have learned by ingesting massive amounts of literature. Within a dedicated visual analytics interface, called CausalChat, users explore single variables or variable pairs recursively to identify causal relations, latent variables, confounders, and mediators, constructing detailed causal networks through conversation. Each probing interaction is translated into a tailored GPT-4 prompt and the response is conveyed through visual representations which are linked to the generated text for explanations. We demonstrate the functionality of CausalChat across diverse data contexts and conduct user studies involving both domain experts and laypersons.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3602448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3602448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因果网络被广泛应用于许多领域,用来对变量之间的复杂关系进行建模。最近的一种方法试图通过人类的集体参与来利用群体的智慧来构建因果网络。虽然这可以产生详细的因果网络,很好地模拟潜在的现象,但它需要大量具有领域理解的个人。我们采用了一种不同的方法:利用大型语言模型(如OpenAI的GPT-4)通过摄取大量文献而获得的因果知识。在名为CausalChat的专用可视化分析界面中,用户可以递归地探索单个变量或变量对,以识别因果关系、潜在变量、混杂因素和中介因素,通过对话构建详细的因果网络。每个探测交互都被翻译成定制的GPT-4提示,并通过与生成的解释文本相关联的视觉表示来传达响应。我们展示了CausalChat在不同数据背景下的功能,并进行了涉及领域专家和外行的用户研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CausalChat: Interactive Causal Model Development and Refinement Using Large Language Models.

Causal networks are widely used in many fields to model the complex relationships between variables. A recent approach has sought to construct causal networks by leveraging the wisdom of crowds through the collective participation of humans. While this can yield detailed causal networks that model the underlying phenomena quite well, it requires a large number of individuals with domain understanding. We adopt a different approach: leveraging the causal knowledge that large language models, such as OpenAI's GPT-4, have learned by ingesting massive amounts of literature. Within a dedicated visual analytics interface, called CausalChat, users explore single variables or variable pairs recursively to identify causal relations, latent variables, confounders, and mediators, constructing detailed causal networks through conversation. Each probing interaction is translated into a tailored GPT-4 prompt and the response is conveyed through visual representations which are linked to the generated text for explanations. We demonstrate the functionality of CausalChat across diverse data contexts and conduct user studies involving both domain experts and laypersons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信