{"title":"TransGI:实时动态全局照明与对象为中心的神经传递模型。","authors":"Yijie Deng, Lei Han, Lu Fang","doi":"10.1109/TVCG.2025.3596146","DOIUrl":null,"url":null,"abstract":"<p><p>Neural rendering algorithms have revolutionized computer graphics, yet their impact on real-time rendering under arbitrary lighting conditions remains limited due to strict latency constraints in practical applications. The key challenge lies in formulating a compact yet expressive material representation. To address this, we propose TransGI, a novel neural rendering method for real-time, high-fidelity global illumination. It comprises an object-centric neural transfer model for material representation and a radiance-sharing lighting system for efficient illumination. Traditional BSDF representations and spatial neural material representations lack expressiveness, requiring thousands of ray evaluations to converge to noise-free colors. Conversely, realtime methods trade quality for efficiency by supporting only diffuse materials. In contrast, our object-centric neural transfer model achieves compactness and expressiveness through an MLPbased decoder and vertex-attached latent features, supporting glossy effects with low memory overhead. For dynamic, varying lighting conditions, we introduce local light probes capturing scene radiance, coupled with an across-probe radiance-sharing strategy for efficient probe generation. We implemented our method in a real-time rendering engine, combining compute shaders and CUDA-based neural networks. Experimental results demonstrate that our method achieves real-time performance of less than 10 ms to render a frame and significantly improved rendering quality compared to baseline methods.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransGI: Real-Time Dynamic Global Illumination with Object-Centric Neural Transfer Model.\",\"authors\":\"Yijie Deng, Lei Han, Lu Fang\",\"doi\":\"10.1109/TVCG.2025.3596146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural rendering algorithms have revolutionized computer graphics, yet their impact on real-time rendering under arbitrary lighting conditions remains limited due to strict latency constraints in practical applications. The key challenge lies in formulating a compact yet expressive material representation. To address this, we propose TransGI, a novel neural rendering method for real-time, high-fidelity global illumination. It comprises an object-centric neural transfer model for material representation and a radiance-sharing lighting system for efficient illumination. Traditional BSDF representations and spatial neural material representations lack expressiveness, requiring thousands of ray evaluations to converge to noise-free colors. Conversely, realtime methods trade quality for efficiency by supporting only diffuse materials. In contrast, our object-centric neural transfer model achieves compactness and expressiveness through an MLPbased decoder and vertex-attached latent features, supporting glossy effects with low memory overhead. For dynamic, varying lighting conditions, we introduce local light probes capturing scene radiance, coupled with an across-probe radiance-sharing strategy for efficient probe generation. We implemented our method in a real-time rendering engine, combining compute shaders and CUDA-based neural networks. Experimental results demonstrate that our method achieves real-time performance of less than 10 ms to render a frame and significantly improved rendering quality compared to baseline methods.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3596146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3596146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TransGI: Real-Time Dynamic Global Illumination with Object-Centric Neural Transfer Model.
Neural rendering algorithms have revolutionized computer graphics, yet their impact on real-time rendering under arbitrary lighting conditions remains limited due to strict latency constraints in practical applications. The key challenge lies in formulating a compact yet expressive material representation. To address this, we propose TransGI, a novel neural rendering method for real-time, high-fidelity global illumination. It comprises an object-centric neural transfer model for material representation and a radiance-sharing lighting system for efficient illumination. Traditional BSDF representations and spatial neural material representations lack expressiveness, requiring thousands of ray evaluations to converge to noise-free colors. Conversely, realtime methods trade quality for efficiency by supporting only diffuse materials. In contrast, our object-centric neural transfer model achieves compactness and expressiveness through an MLPbased decoder and vertex-attached latent features, supporting glossy effects with low memory overhead. For dynamic, varying lighting conditions, we introduce local light probes capturing scene radiance, coupled with an across-probe radiance-sharing strategy for efficient probe generation. We implemented our method in a real-time rendering engine, combining compute shaders and CUDA-based neural networks. Experimental results demonstrate that our method achieves real-time performance of less than 10 ms to render a frame and significantly improved rendering quality compared to baseline methods.