PF-AGCN:一种基于蛋白质相互作用的功能预测自适应图卷积网络。

IF 5.4
Shumin Yang, Yuhan Su, Yuchen Lin, Qin Lin, Zhong Chen
{"title":"PF-AGCN:一种基于蛋白质相互作用的功能预测自适应图卷积网络。","authors":"Shumin Yang, Yuhan Su, Yuchen Lin, Qin Lin, Zhong Chen","doi":"10.1093/bioinformatics/btaf473","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Proteins carry out most biological processes via interactions with other proteins, known as protein-protein interactions (PPIs). Accurately predicting PPIs is crucial for understanding protein function, yet existing methods often fall short in capturing their complex and hierarchical nature.</p><p><strong>Results: </strong>We propose PF-AGCN, an adaptive graph convolutional network that leverages two distinct graph structures: a function graph representing hierarchical Gene Ontology term relationships and a protein graph modeling direct interactions between proteins. Unlike traditional graph attention networks, PF-AGCN preserves the original biological structures while dynamically learning new relationships, ensuring the retention of essential biological information. Additionally, our framework integrates a protein language model with stacked dilated causal convolutional neural networks, enabling the synergistic fusion of global sequence semantics and local structural patterns. Extensive experiments on a comprehensive protein dataset across three evaluation facets demonstrate PF-AGCN's superior prediction accuracy.</p><p><strong>Availability and implementation: </strong>The source code is publicly available at https://github.com/smyang107/PFAGCN.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448829/pdf/","citationCount":"0","resultStr":"{\"title\":\"PF-AGCN: an adaptive graph convolutional network for protein-protein interaction-based function prediction.\",\"authors\":\"Shumin Yang, Yuhan Su, Yuchen Lin, Qin Lin, Zhong Chen\",\"doi\":\"10.1093/bioinformatics/btaf473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Proteins carry out most biological processes via interactions with other proteins, known as protein-protein interactions (PPIs). Accurately predicting PPIs is crucial for understanding protein function, yet existing methods often fall short in capturing their complex and hierarchical nature.</p><p><strong>Results: </strong>We propose PF-AGCN, an adaptive graph convolutional network that leverages two distinct graph structures: a function graph representing hierarchical Gene Ontology term relationships and a protein graph modeling direct interactions between proteins. Unlike traditional graph attention networks, PF-AGCN preserves the original biological structures while dynamically learning new relationships, ensuring the retention of essential biological information. Additionally, our framework integrates a protein language model with stacked dilated causal convolutional neural networks, enabling the synergistic fusion of global sequence semantics and local structural patterns. Extensive experiments on a comprehensive protein dataset across three evaluation facets demonstrate PF-AGCN's superior prediction accuracy.</p><p><strong>Availability and implementation: </strong>The source code is publicly available at https://github.com/smyang107/PFAGCN.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:蛋白质通过与其他蛋白质的相互作用来完成大多数生物过程,称为蛋白质-蛋白质相互作用(PPIs)。准确预测ppi对于理解蛋白质功能至关重要,然而现有的方法往往无法捕捉到它们的复杂性和层次性。结果:我们提出了一种自适应图卷积网络PF-AGCN,它利用了两种不同的图结构:表示分层基因本体术语关系的功能图和建模蛋白质之间直接相互作用的蛋白质图。与传统的图关注网络不同,PF-AGCN在保留原有生物结构的同时动态学习新的关系,保证了重要生物信息的保留。此外,我们的框架将蛋白质语言模型与堆叠的扩展因果卷积神经网络集成在一起,实现了全局序列语义和局部结构模式的协同融合。在三个评估方面的综合蛋白质数据集上进行的大量实验表明,PF-AGCN具有优越的预测精度。可用性:源代码可在https://github.com/smyang107/PFAGCN上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PF-AGCN: an adaptive graph convolutional network for protein-protein interaction-based function prediction.

PF-AGCN: an adaptive graph convolutional network for protein-protein interaction-based function prediction.

PF-AGCN: an adaptive graph convolutional network for protein-protein interaction-based function prediction.

PF-AGCN: an adaptive graph convolutional network for protein-protein interaction-based function prediction.

Motivation: Proteins carry out most biological processes via interactions with other proteins, known as protein-protein interactions (PPIs). Accurately predicting PPIs is crucial for understanding protein function, yet existing methods often fall short in capturing their complex and hierarchical nature.

Results: We propose PF-AGCN, an adaptive graph convolutional network that leverages two distinct graph structures: a function graph representing hierarchical Gene Ontology term relationships and a protein graph modeling direct interactions between proteins. Unlike traditional graph attention networks, PF-AGCN preserves the original biological structures while dynamically learning new relationships, ensuring the retention of essential biological information. Additionally, our framework integrates a protein language model with stacked dilated causal convolutional neural networks, enabling the synergistic fusion of global sequence semantics and local structural patterns. Extensive experiments on a comprehensive protein dataset across three evaluation facets demonstrate PF-AGCN's superior prediction accuracy.

Availability and implementation: The source code is publicly available at https://github.com/smyang107/PFAGCN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信