一种基于机器学习的决策支持工具,用于标准化高剂量率宫颈癌腔内与间质近距离治疗技术选择。

IF 1.8
Tomohiro Kajikawa, Koji Masui, Koji Sakai, Tadashi Takenaka, Gen Suzuki, Yuki Yoshino, Hikaru Nemoto, Hideya Yamazaki, Kei Yamada
{"title":"一种基于机器学习的决策支持工具,用于标准化高剂量率宫颈癌腔内与间质近距离治疗技术选择。","authors":"Tomohiro Kajikawa, Koji Masui, Koji Sakai, Tadashi Takenaka, Gen Suzuki, Yuki Yoshino, Hikaru Nemoto, Hideya Yamazaki, Kei Yamada","doi":"10.1016/j.brachy.2025.07.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop and evaluate a machine-learning (ML) decision-support tool that standardizes selection of intracavitary brachytherapy (ICBT) versus hybrid intracavitary/interstitial brachytherapy (IC/ISBT) in high-dose-rate (HDR) cervical cancer.</p><p><strong>Methods and materials: </strong>We retrospectively analyzed 159 HDR brachytherapy plans from 50 consecutive patients treated between April 2022 and June 2024. Brachytherapy techniques (ICBT or IC/ISBT) were determined by an experienced radiation oncologist using CT/MRI-based 3-D image-guided brachytherapy. For each plan, 144 shape- and distance-based geometric features describing the high-risk clinical target volume (HR-CTV), bladder, rectum, and applicator were extracted. Nested five-fold cross-validation combined minimum-redundancy-maximum-relevance feature selection with five classifiers (k-nearest neighbors, logistic regression, naïve Bayes, random forest, support-vector classifier) and two voting ensembles (hard and soft voting). Model performance was benchmarked against single-factor rules (HR-CTV > 30 cm³; maximum lateral HR-CTV-tandem distance > 25 mm).</p><p><strong>Results: </strong>Logistic regression achieved the highest test accuracy 0.849 ± 0.023 and a mean area-under-the-curve (AUC) 0.903 ± 0.033, outperforming the volume rule and matching the distance rule's AUC 0.907 ± 0.057 while providing greater accuracy 0.805 ± 0.114. These differences were not statistically significant. Feature-importance analysis showed that the maximum HR-CTV-tandem lateral distance and the bladder's minimal short-axis length consistently dominated model decisions.​ CONCLUSIONS: A compact ML tool using two readily measurable geometric features can reliably assist clinicians in choosing between ICBT and IC/ISBT, thereby reducing inter-physician variability and promoting standardized HDR cervical brachytherapy technique selection.</p>","PeriodicalId":93914,"journal":{"name":"Brachytherapy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning-based decision support tool for standardizing intracavitary versus interstitial brachytherapy technique selection in high-dose-rate cervical cancer.\",\"authors\":\"Tomohiro Kajikawa, Koji Masui, Koji Sakai, Tadashi Takenaka, Gen Suzuki, Yuki Yoshino, Hikaru Nemoto, Hideya Yamazaki, Kei Yamada\",\"doi\":\"10.1016/j.brachy.2025.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop and evaluate a machine-learning (ML) decision-support tool that standardizes selection of intracavitary brachytherapy (ICBT) versus hybrid intracavitary/interstitial brachytherapy (IC/ISBT) in high-dose-rate (HDR) cervical cancer.</p><p><strong>Methods and materials: </strong>We retrospectively analyzed 159 HDR brachytherapy plans from 50 consecutive patients treated between April 2022 and June 2024. Brachytherapy techniques (ICBT or IC/ISBT) were determined by an experienced radiation oncologist using CT/MRI-based 3-D image-guided brachytherapy. For each plan, 144 shape- and distance-based geometric features describing the high-risk clinical target volume (HR-CTV), bladder, rectum, and applicator were extracted. Nested five-fold cross-validation combined minimum-redundancy-maximum-relevance feature selection with five classifiers (k-nearest neighbors, logistic regression, naïve Bayes, random forest, support-vector classifier) and two voting ensembles (hard and soft voting). Model performance was benchmarked against single-factor rules (HR-CTV > 30 cm³; maximum lateral HR-CTV-tandem distance > 25 mm).</p><p><strong>Results: </strong>Logistic regression achieved the highest test accuracy 0.849 ± 0.023 and a mean area-under-the-curve (AUC) 0.903 ± 0.033, outperforming the volume rule and matching the distance rule's AUC 0.907 ± 0.057 while providing greater accuracy 0.805 ± 0.114. These differences were not statistically significant. Feature-importance analysis showed that the maximum HR-CTV-tandem lateral distance and the bladder's minimal short-axis length consistently dominated model decisions.​ CONCLUSIONS: A compact ML tool using two readily measurable geometric features can reliably assist clinicians in choosing between ICBT and IC/ISBT, thereby reducing inter-physician variability and promoting standardized HDR cervical brachytherapy technique selection.</p>\",\"PeriodicalId\":93914,\"journal\":{\"name\":\"Brachytherapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brachytherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.brachy.2025.07.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brachytherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.brachy.2025.07.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发和评估一种机器学习(ML)决策支持工具,用于标准化高剂量率(HDR)宫颈癌腔内近距离放疗(ICBT)与腔内/间质混合近距离放疗(IC/ISBT)的选择。方法和材料:我们回顾性分析了2022年4月至2024年6月期间连续治疗的50例患者的159个HDR近距离治疗方案。近距离治疗技术(ICBT或IC/ISBT)由经验丰富的放射肿瘤学家使用基于CT/ mri的三维图像引导近距离治疗确定。对于每个方案,提取144个基于形状和距离的几何特征,描述高危临床靶体积(HR-CTV)、膀胱、直肠和涂抹器。嵌套五重交叉验证结合了最小冗余最大相关性特征选择与五个分类器(k近邻,逻辑回归,naïve贝叶斯,随机森林,支持向量分类器)和两个投票集成(硬投票和软投票)。模型性能以单因素规则为基准(HR-CTV > 30 cm³;HR-CTV-tandem最大横向距离> 25 mm)。结果:Logistic回归的最高检验精度为0.849±0.023,平均曲线下面积(AUC)为0.903±0.033,优于体积规则,与距离规则的AUC(0.907±0.057)相匹配,准确度为0.805±0.114。这些差异没有统计学意义。特征重要性分析表明,最大hr - ctv串联侧向距离和膀胱最小短轴长度始终主导着模型决策。结论:使用两个易于测量的几何特征的紧凑ML工具可以可靠地帮助临床医生在ICBT和IC/ISBT之间进行选择,从而减少医生之间的差异,促进标准化的HDR颈椎近距离治疗技术选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning-based decision support tool for standardizing intracavitary versus interstitial brachytherapy technique selection in high-dose-rate cervical cancer.

Purpose: To develop and evaluate a machine-learning (ML) decision-support tool that standardizes selection of intracavitary brachytherapy (ICBT) versus hybrid intracavitary/interstitial brachytherapy (IC/ISBT) in high-dose-rate (HDR) cervical cancer.

Methods and materials: We retrospectively analyzed 159 HDR brachytherapy plans from 50 consecutive patients treated between April 2022 and June 2024. Brachytherapy techniques (ICBT or IC/ISBT) were determined by an experienced radiation oncologist using CT/MRI-based 3-D image-guided brachytherapy. For each plan, 144 shape- and distance-based geometric features describing the high-risk clinical target volume (HR-CTV), bladder, rectum, and applicator were extracted. Nested five-fold cross-validation combined minimum-redundancy-maximum-relevance feature selection with five classifiers (k-nearest neighbors, logistic regression, naïve Bayes, random forest, support-vector classifier) and two voting ensembles (hard and soft voting). Model performance was benchmarked against single-factor rules (HR-CTV > 30 cm³; maximum lateral HR-CTV-tandem distance > 25 mm).

Results: Logistic regression achieved the highest test accuracy 0.849 ± 0.023 and a mean area-under-the-curve (AUC) 0.903 ± 0.033, outperforming the volume rule and matching the distance rule's AUC 0.907 ± 0.057 while providing greater accuracy 0.805 ± 0.114. These differences were not statistically significant. Feature-importance analysis showed that the maximum HR-CTV-tandem lateral distance and the bladder's minimal short-axis length consistently dominated model decisions.​ CONCLUSIONS: A compact ML tool using two readily measurable geometric features can reliably assist clinicians in choosing between ICBT and IC/ISBT, thereby reducing inter-physician variability and promoting standardized HDR cervical brachytherapy technique selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信