MRDagent:迭代和自适应参数优化稳定的基于ctdna的MRD检测在异质样品。

IF 5.4
Tianci Wang, Xin Lai, Shenjie Wang, Yuqian Liu, Xiaoyan Zhu, Jiayin Wang
{"title":"MRDagent:迭代和自适应参数优化稳定的基于ctdna的MRD检测在异质样品。","authors":"Tianci Wang, Xin Lai, Shenjie Wang, Yuqian Liu, Xiaoyan Zhu, Jiayin Wang","doi":"10.1093/bioinformatics/btaf485","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Minimal residual disease (MRD) as critical biomarker for cancer prognosis and management plays a crucial role in improving patient outcomes. However, detecting MRD via next-generation sequencing-based circulating tumor DNA variant calling remains unstable due to the extremely low variant allele frequency and significant inter- and intra-sample heterogeneity. Although parameter optimization can theoretically enhance the detection performance of variants, achieving stable MRD detection remains challenging due to three key factors: (i) the necessity for individualized parameter tuning across numerous heterogeneous genomic intervals within each sample, (ii) the tightly interdependent parameter requirements across different stages of variant detection workflows, and (iii) the limitations of current automated parameter optimization methods.</p><p><strong>Results: </strong>In this study, we propose MRDagent, a novel variant detection tool designed specifically for MRD detection. MRDagent incorporates an iterative and self-adaptive optimization framework capable of handling unknown objectives, varying constraints, and highly coupled parameters across stages. A key innovation of MRDagent is the integration of a convolutional neural network-based meta-model, trained on historical data to enable rapid parameter prediction. This significantly enhances computational efficiency and generalization performance. Extensive evaluations on simulated and real-world datasets demonstrate MRDagent's superior and stable performance, providing an efficient, reliable solution for MRD detection in clinical and high-throughput research applications.</p><p><strong>Availability and implementation: </strong>MRDagent is freely available at https://github.com/aAT0047/MRDagent.git. The corresponding dataset and software archive are available at Zenodo: https://doi.org/10.5281/zenodo.15458496.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462387/pdf/","citationCount":"0","resultStr":"{\"title\":\"MRDagent: iterative and adaptive parameter optimization for stable ctDNA-based MRD detection in heterogeneous samples.\",\"authors\":\"Tianci Wang, Xin Lai, Shenjie Wang, Yuqian Liu, Xiaoyan Zhu, Jiayin Wang\",\"doi\":\"10.1093/bioinformatics/btaf485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Minimal residual disease (MRD) as critical biomarker for cancer prognosis and management plays a crucial role in improving patient outcomes. However, detecting MRD via next-generation sequencing-based circulating tumor DNA variant calling remains unstable due to the extremely low variant allele frequency and significant inter- and intra-sample heterogeneity. Although parameter optimization can theoretically enhance the detection performance of variants, achieving stable MRD detection remains challenging due to three key factors: (i) the necessity for individualized parameter tuning across numerous heterogeneous genomic intervals within each sample, (ii) the tightly interdependent parameter requirements across different stages of variant detection workflows, and (iii) the limitations of current automated parameter optimization methods.</p><p><strong>Results: </strong>In this study, we propose MRDagent, a novel variant detection tool designed specifically for MRD detection. MRDagent incorporates an iterative and self-adaptive optimization framework capable of handling unknown objectives, varying constraints, and highly coupled parameters across stages. A key innovation of MRDagent is the integration of a convolutional neural network-based meta-model, trained on historical data to enable rapid parameter prediction. This significantly enhances computational efficiency and generalization performance. Extensive evaluations on simulated and real-world datasets demonstrate MRDagent's superior and stable performance, providing an efficient, reliable solution for MRD detection in clinical and high-throughput research applications.</p><p><strong>Availability and implementation: </strong>MRDagent is freely available at https://github.com/aAT0047/MRDagent.git. The corresponding dataset and software archive are available at Zenodo: https://doi.org/10.5281/zenodo.15458496.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:最小残留病(MRD)作为癌症预后和治疗的关键生物标志物,在改善患者预后方面起着至关重要的作用。然而,由于极低的变异等位基因频率(VAF)和显著的样本间和样本内异质性,通过基于下一代测序(NGS)的循环肿瘤DNA (ctDNA)变异呼叫检测最小残留病(MRD)仍然不稳定。虽然参数优化理论上可以提高变异检测性能,但由于三个关键因素,实现稳定的MRD检测仍然具有挑战性:(i)需要在每个样本内的众多异质基因组间隔中进行个性化参数调整,(ii)在变异检测工作流程的不同阶段中紧密相互依赖的参数要求,以及(iii)当前自动化参数优化方法的局限性。结果:在本研究中,我们提出了MRDagent,一种专门用于MRD检测的新型变异检测工具。MRDagent集成了一个迭代和自适应优化框架,能够处理未知目标、变化的约束和跨阶段的高度耦合参数。MRDagent的一个关键创新是集成了基于卷积神经网络(CNN)的元模型,该模型在历史数据上进行训练,以实现快速参数预测。这大大提高了计算效率和泛化性能。对模拟和真实数据集的广泛评估表明,MRDagent具有优越而稳定的性能,为临床和高通量研究应用中的MRD检测提供了高效、可靠的解决方案。可用性:MRDagent可在https://github.com/aAT0047/MRDagent.git.The免费获得,相应的数据集和软件存档可在Zenodo获得:https://doi.org/10.5281/zenodo.15458496.Supplementary信息:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRDagent: iterative and adaptive parameter optimization for stable ctDNA-based MRD detection in heterogeneous samples.

Motivation: Minimal residual disease (MRD) as critical biomarker for cancer prognosis and management plays a crucial role in improving patient outcomes. However, detecting MRD via next-generation sequencing-based circulating tumor DNA variant calling remains unstable due to the extremely low variant allele frequency and significant inter- and intra-sample heterogeneity. Although parameter optimization can theoretically enhance the detection performance of variants, achieving stable MRD detection remains challenging due to three key factors: (i) the necessity for individualized parameter tuning across numerous heterogeneous genomic intervals within each sample, (ii) the tightly interdependent parameter requirements across different stages of variant detection workflows, and (iii) the limitations of current automated parameter optimization methods.

Results: In this study, we propose MRDagent, a novel variant detection tool designed specifically for MRD detection. MRDagent incorporates an iterative and self-adaptive optimization framework capable of handling unknown objectives, varying constraints, and highly coupled parameters across stages. A key innovation of MRDagent is the integration of a convolutional neural network-based meta-model, trained on historical data to enable rapid parameter prediction. This significantly enhances computational efficiency and generalization performance. Extensive evaluations on simulated and real-world datasets demonstrate MRDagent's superior and stable performance, providing an efficient, reliable solution for MRD detection in clinical and high-throughput research applications.

Availability and implementation: MRDagent is freely available at https://github.com/aAT0047/MRDagent.git. The corresponding dataset and software archive are available at Zenodo: https://doi.org/10.5281/zenodo.15458496.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信