Mo Zhang, Chaofan Wang, Weiwei Jiang, David Oswald, Toby Murray, Eduard Marin, Jing Wei, Mark Ryan, Vassilis Kostakos
{"title":"利用振动与植入式医疗器械进行安全配对:开发和可用性研究。","authors":"Mo Zhang, Chaofan Wang, Weiwei Jiang, David Oswald, Toby Murray, Eduard Marin, Jing Wei, Mark Ryan, Vassilis Kostakos","doi":"10.2196/57091","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Implantable medical devices (IMDs), such as pacemakers, increasingly communicate wirelessly with external devices. To secure this wireless communication channel, a pairing process is needed to bootstrap a secret key between the devices. Previous work has proposed pairing approaches that often adopt a \"seamless\" design and render the pairing process imperceptible to patients. This lack of user perception can significantly compromise security and pose threats to patients.</p><p><strong>Objective: </strong>The study aimed to explore the use of highly perceptible vibrations for pairing with IMDs and aim to propose a novel technique that leverages the natural randomness in human motor behavior as a shared source of entropy for pairing, potentially deployable to current IMD products.</p><p><strong>Methods: </strong>A proof of concept was developed to demonstrate the proposed technique. A wearable prototype was built to simulate an individual acting as an IMD patient (real patients were not involved to avoid potential risks), and signal processing algorithms were devised to use accelerometer readings for facilitating secure pairing with an IMD. The technique was thoroughly evaluated in terms of accuracy, security, and usability through a lab study involving 24 participants.</p><p><strong>Results: </strong>Our proposed pairing technique achieves high pairing accuracy, with a zero false acceptance rate (indicating low risks from adversaries) and a false rejection rate of only 0.6% (1/192; suggesting that legitimate users will likely experience very few failures). Our approach also offers robust security, which passes the National Institute of Standards and Technology statistical tests (with all P values >.01). Moreover, our technique has high usability, evidenced by an average System Usability Scale questionnaire score of 73.6 (surpassing the standard benchmark of 68 for \"good usability\") and insights gathered from the interviews. Furthermore, the entire pairing process can be efficiently completed within 5 seconds.</p><p><strong>Conclusions: </strong>Vibration can be used to realize secure, usable, and deployable pairing in the context of IMDs. Our method also exhibits advantages over previous approaches, for example, lenient requirements on the sensing capabilities of IMDs and the synchronization between the IMD and the external device.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"10 ","pages":"e57091"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Vibration for Secure Pairing With Implantable Medical Devices: Development and Usability Study.\",\"authors\":\"Mo Zhang, Chaofan Wang, Weiwei Jiang, David Oswald, Toby Murray, Eduard Marin, Jing Wei, Mark Ryan, Vassilis Kostakos\",\"doi\":\"10.2196/57091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Implantable medical devices (IMDs), such as pacemakers, increasingly communicate wirelessly with external devices. To secure this wireless communication channel, a pairing process is needed to bootstrap a secret key between the devices. Previous work has proposed pairing approaches that often adopt a \\\"seamless\\\" design and render the pairing process imperceptible to patients. This lack of user perception can significantly compromise security and pose threats to patients.</p><p><strong>Objective: </strong>The study aimed to explore the use of highly perceptible vibrations for pairing with IMDs and aim to propose a novel technique that leverages the natural randomness in human motor behavior as a shared source of entropy for pairing, potentially deployable to current IMD products.</p><p><strong>Methods: </strong>A proof of concept was developed to demonstrate the proposed technique. A wearable prototype was built to simulate an individual acting as an IMD patient (real patients were not involved to avoid potential risks), and signal processing algorithms were devised to use accelerometer readings for facilitating secure pairing with an IMD. The technique was thoroughly evaluated in terms of accuracy, security, and usability through a lab study involving 24 participants.</p><p><strong>Results: </strong>Our proposed pairing technique achieves high pairing accuracy, with a zero false acceptance rate (indicating low risks from adversaries) and a false rejection rate of only 0.6% (1/192; suggesting that legitimate users will likely experience very few failures). Our approach also offers robust security, which passes the National Institute of Standards and Technology statistical tests (with all P values >.01). Moreover, our technique has high usability, evidenced by an average System Usability Scale questionnaire score of 73.6 (surpassing the standard benchmark of 68 for \\\"good usability\\\") and insights gathered from the interviews. Furthermore, the entire pairing process can be efficiently completed within 5 seconds.</p><p><strong>Conclusions: </strong>Vibration can be used to realize secure, usable, and deployable pairing in the context of IMDs. Our method also exhibits advantages over previous approaches, for example, lenient requirements on the sensing capabilities of IMDs and the synchronization between the IMD and the external device.</p>\",\"PeriodicalId\":87288,\"journal\":{\"name\":\"JMIR biomedical engineering\",\"volume\":\"10 \",\"pages\":\"e57091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/57091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/57091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Vibration for Secure Pairing With Implantable Medical Devices: Development and Usability Study.
Background: Implantable medical devices (IMDs), such as pacemakers, increasingly communicate wirelessly with external devices. To secure this wireless communication channel, a pairing process is needed to bootstrap a secret key between the devices. Previous work has proposed pairing approaches that often adopt a "seamless" design and render the pairing process imperceptible to patients. This lack of user perception can significantly compromise security and pose threats to patients.
Objective: The study aimed to explore the use of highly perceptible vibrations for pairing with IMDs and aim to propose a novel technique that leverages the natural randomness in human motor behavior as a shared source of entropy for pairing, potentially deployable to current IMD products.
Methods: A proof of concept was developed to demonstrate the proposed technique. A wearable prototype was built to simulate an individual acting as an IMD patient (real patients were not involved to avoid potential risks), and signal processing algorithms were devised to use accelerometer readings for facilitating secure pairing with an IMD. The technique was thoroughly evaluated in terms of accuracy, security, and usability through a lab study involving 24 participants.
Results: Our proposed pairing technique achieves high pairing accuracy, with a zero false acceptance rate (indicating low risks from adversaries) and a false rejection rate of only 0.6% (1/192; suggesting that legitimate users will likely experience very few failures). Our approach also offers robust security, which passes the National Institute of Standards and Technology statistical tests (with all P values >.01). Moreover, our technique has high usability, evidenced by an average System Usability Scale questionnaire score of 73.6 (surpassing the standard benchmark of 68 for "good usability") and insights gathered from the interviews. Furthermore, the entire pairing process can be efficiently completed within 5 seconds.
Conclusions: Vibration can be used to realize secure, usable, and deployable pairing in the context of IMDs. Our method also exhibits advantages over previous approaches, for example, lenient requirements on the sensing capabilities of IMDs and the synchronization between the IMD and the external device.