基于RBF辨识和扩展卡尔曼滤波的I2RIS机器人模型预测路径积分控制。

Mojtaba Esfandiari, Pengyuan Du, Haochen Wei, Peter Gehlbach, Adnan Munawar, Peter Kazanzides, Iulian Iordachita
{"title":"基于RBF辨识和扩展卡尔曼滤波的I2RIS机器人模型预测路径积分控制。","authors":"Mojtaba Esfandiari, Pengyuan Du, Haochen Wei, Peter Gehlbach, Adnan Munawar, Peter Kazanzides, Iulian Iordachita","doi":"10.23919/acc63710.2025.11107661","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I<sup>2</sup>RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I<sup>2</sup>RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2025 ","pages":"3341-3347"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372988/pdf/","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Path Integral Control of I<sup>2</sup>RIS Robot Using RBF Identifier and Extended Kalman Filter.\",\"authors\":\"Mojtaba Esfandiari, Pengyuan Du, Haochen Wei, Peter Gehlbach, Adnan Munawar, Peter Kazanzides, Iulian Iordachita\",\"doi\":\"10.23919/acc63710.2025.11107661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I<sup>2</sup>RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I<sup>2</sup>RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2025 \",\"pages\":\"3341-3347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc63710.2025.11107661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc63710.2025.11107661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于蛇形机器人的非线性力学特性,如迟滞、变刚度和驱动索与机器人体之间的未知摩擦等,建模和控制蛇形机器人是一个具有挑战性的问题。这一挑战对于蛇机器人在眼科手术中的应用更为重要,例如改进的集成机器人眼内蛇(I2RIS),因为它体积小,缺乏嵌入式感觉反馈。数据驱动模型利用全局函数近似,减少了复杂分析模型的挑战和计算成本。然而,如果在训练阶段没有看到新的数据,它们的性能可能会下降。因此,增加一个适应机制可能会提高这些模型在蛇形机器人与未知环境交互时的性能。在这项工作中,我们在基于高斯混合模型(GMM)和高斯混合回归(GMR)的I2RIS数据驱动模型上应用了模型预测路径积分(MPPI)控制器。为了分析MPPI在看不见的机器人-组织相互作用情况下的性能,模拟了未知的外部干扰和环境负荷,并将其添加到GMM-GMR模型中。然后使用径向基函数(RBF)在线识别机器人模型的这些不确定性,该函数的权重使用扩展卡尔曼滤波器(EKF)更新。仿真结果证明了MPPI算法的最优控制解的鲁棒性,以及与传统模型预测控制(MPC)算法相比的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Path Integral Control of I2RIS Robot Using RBF Identifier and Extended Kalman Filter.

Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I2RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I2RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信