Isabella B Strickland, Amy K Ferketich, Alayna P Tackett, Joanne G Patterson, Nicholas J K Breitborde, Jade Davis, Megan Roberts
{"title":"在线研究中的冒名顶替者、机器人和其他对数据完整性的威胁:文献的范围审查和最佳实践建议。","authors":"Isabella B Strickland, Amy K Ferketich, Alayna P Tackett, Joanne G Patterson, Nicholas J K Breitborde, Jade Davis, Megan Roberts","doi":"10.2196/70926","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Threats to data integrity have always existed in online human subjects research, but it appears these threats have become more common and more advanced in recent years. Researchers have proposed various techniques to address satisficers, repeat participants, bots, and fraudulent participants; yet, no synthesis of this literature has been conducted.</p><p><strong>Objective: </strong>This study undertakes a scoping review of recent methods and ethical considerations for addressing threats to data integrity in online research.</p><p><strong>Methods: </strong>A PubMed search was used to identify 90 articles published from 2020 to 2024 that were written in English, that discussed online human subjects research, and that had at least one paragraph dedicated to discussing threats to online data integrity.</p><p><strong>Results: </strong>We cataloged 16 types of techniques for addressing threats to online data integrity. Techniques to authenticate personal information (eg, videoconferencing and mailing incentives to a physical address) appear to be very effective at deterring or identifying fraudulent participants. Yet such techniques also come with ethical considerations, including participant burden and increased threats to privacy. Other techniques, such as Completely Automated Public Turing test to tell Computers and Humans Apart (reCAPTCHA; Google LLC), scores, and checking IP addresses, although very common, were also deemed by several researchers as no longer sufficient protections against advanced threats to data integrity.</p><p><strong>Conclusions: </strong>Overall, this review demonstrates the importance of shifting online research protocols as bots and fraudulent participants become more sophisticated.</p>","PeriodicalId":74345,"journal":{"name":"Online journal of public health informatics","volume":"17 ","pages":"e70926"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396152/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imposters, Bots, and Other Threats to Data Integrity in Online Research: Scoping Review of the Literature and Recommendations for Best Practices.\",\"authors\":\"Isabella B Strickland, Amy K Ferketich, Alayna P Tackett, Joanne G Patterson, Nicholas J K Breitborde, Jade Davis, Megan Roberts\",\"doi\":\"10.2196/70926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Threats to data integrity have always existed in online human subjects research, but it appears these threats have become more common and more advanced in recent years. Researchers have proposed various techniques to address satisficers, repeat participants, bots, and fraudulent participants; yet, no synthesis of this literature has been conducted.</p><p><strong>Objective: </strong>This study undertakes a scoping review of recent methods and ethical considerations for addressing threats to data integrity in online research.</p><p><strong>Methods: </strong>A PubMed search was used to identify 90 articles published from 2020 to 2024 that were written in English, that discussed online human subjects research, and that had at least one paragraph dedicated to discussing threats to online data integrity.</p><p><strong>Results: </strong>We cataloged 16 types of techniques for addressing threats to online data integrity. Techniques to authenticate personal information (eg, videoconferencing and mailing incentives to a physical address) appear to be very effective at deterring or identifying fraudulent participants. Yet such techniques also come with ethical considerations, including participant burden and increased threats to privacy. Other techniques, such as Completely Automated Public Turing test to tell Computers and Humans Apart (reCAPTCHA; Google LLC), scores, and checking IP addresses, although very common, were also deemed by several researchers as no longer sufficient protections against advanced threats to data integrity.</p><p><strong>Conclusions: </strong>Overall, this review demonstrates the importance of shifting online research protocols as bots and fraudulent participants become more sophisticated.</p>\",\"PeriodicalId\":74345,\"journal\":{\"name\":\"Online journal of public health informatics\",\"volume\":\"17 \",\"pages\":\"e70926\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396152/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online journal of public health informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/70926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online journal of public health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/70926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imposters, Bots, and Other Threats to Data Integrity in Online Research: Scoping Review of the Literature and Recommendations for Best Practices.
Background: Threats to data integrity have always existed in online human subjects research, but it appears these threats have become more common and more advanced in recent years. Researchers have proposed various techniques to address satisficers, repeat participants, bots, and fraudulent participants; yet, no synthesis of this literature has been conducted.
Objective: This study undertakes a scoping review of recent methods and ethical considerations for addressing threats to data integrity in online research.
Methods: A PubMed search was used to identify 90 articles published from 2020 to 2024 that were written in English, that discussed online human subjects research, and that had at least one paragraph dedicated to discussing threats to online data integrity.
Results: We cataloged 16 types of techniques for addressing threats to online data integrity. Techniques to authenticate personal information (eg, videoconferencing and mailing incentives to a physical address) appear to be very effective at deterring or identifying fraudulent participants. Yet such techniques also come with ethical considerations, including participant burden and increased threats to privacy. Other techniques, such as Completely Automated Public Turing test to tell Computers and Humans Apart (reCAPTCHA; Google LLC), scores, and checking IP addresses, although very common, were also deemed by several researchers as no longer sufficient protections against advanced threats to data integrity.
Conclusions: Overall, this review demonstrates the importance of shifting online research protocols as bots and fraudulent participants become more sophisticated.