利用多效性提高变异发现与功能性错误发现率。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Andrew J. Bass, Chris Wallace
{"title":"利用多效性提高变异发现与功能性错误发现率。","authors":"Andrew J. Bass, Chris Wallace","doi":"10.1038/s43588-025-00852-3","DOIUrl":null,"url":null,"abstract":"The cost of recruiting participants for genome-wide association studies (GWASs) can limit sample sizes and hinder the discovery of genetic variants. Here we introduce the surrogate functional false discovery rate (sfFDR) framework that integrates summary statistics of related traits to increase power. The sfFDR framework provides estimates of FDR quantities such as the functional local FDR and q value, and uses these estimates to derive a functional P value for type I error rate control and a functional local Bayes’ factor for post-GWAS analyses. Compared with a standard analysis, sfFDR substantially increased power (equivalent to a 52% increase in sample size) in a study of obesity-related traits from the UK Biobank and discovered eight additional lead SNPs near genes linked to immune-related responses in a rare disease GWAS of eosinophilic granulomatosis with polyangiitis. Collectively, these results highlight the utility of exploiting related traits in both small and large studies. This study introduces a cost-effective strategy called surrogate functional false discovery rates to increase power in genome-wide association studies by leveraging genetic correlations (or pleiotropy) between related traits.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 9","pages":"769-781"},"PeriodicalIF":18.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00852-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploiting pleiotropy to enhance variant discovery with functional false discovery rates\",\"authors\":\"Andrew J. Bass, Chris Wallace\",\"doi\":\"10.1038/s43588-025-00852-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cost of recruiting participants for genome-wide association studies (GWASs) can limit sample sizes and hinder the discovery of genetic variants. Here we introduce the surrogate functional false discovery rate (sfFDR) framework that integrates summary statistics of related traits to increase power. The sfFDR framework provides estimates of FDR quantities such as the functional local FDR and q value, and uses these estimates to derive a functional P value for type I error rate control and a functional local Bayes’ factor for post-GWAS analyses. Compared with a standard analysis, sfFDR substantially increased power (equivalent to a 52% increase in sample size) in a study of obesity-related traits from the UK Biobank and discovered eight additional lead SNPs near genes linked to immune-related responses in a rare disease GWAS of eosinophilic granulomatosis with polyangiitis. Collectively, these results highlight the utility of exploiting related traits in both small and large studies. This study introduces a cost-effective strategy called surrogate functional false discovery rates to increase power in genome-wide association studies by leveraging genetic correlations (or pleiotropy) between related traits.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 9\",\"pages\":\"769-781\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s43588-025-00852-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00852-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00852-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

招募全基因组关联研究(GWASs)参与者的成本可能会限制样本量并阻碍遗传变异的发现。在这里,我们引入代理功能错误发现率(sfFDR)框架,该框架集成了相关特征的汇总统计以提高功率。sfFDR框架提供了FDR数量的估计值,如功能性局部FDR和q值,并使用这些估计值推导出用于I型错误率控制的功能性P值和用于后gwas分析的功能性局部贝叶斯因子。与标准分析相比,sfFDR在英国生物银行(UK Biobank)的一项肥胖相关性状研究中显著增加了功效(相当于样样量增加了52%),并在一种罕见疾病GWAS(嗜酸性肉芽肿病合并多血管炎)中发现了8个与免疫相关反应相关的基因附近的铅snp。总的来说,这些结果强调了在小型和大型研究中利用相关特征的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploiting pleiotropy to enhance variant discovery with functional false discovery rates

Exploiting pleiotropy to enhance variant discovery with functional false discovery rates
The cost of recruiting participants for genome-wide association studies (GWASs) can limit sample sizes and hinder the discovery of genetic variants. Here we introduce the surrogate functional false discovery rate (sfFDR) framework that integrates summary statistics of related traits to increase power. The sfFDR framework provides estimates of FDR quantities such as the functional local FDR and q value, and uses these estimates to derive a functional P value for type I error rate control and a functional local Bayes’ factor for post-GWAS analyses. Compared with a standard analysis, sfFDR substantially increased power (equivalent to a 52% increase in sample size) in a study of obesity-related traits from the UK Biobank and discovered eight additional lead SNPs near genes linked to immune-related responses in a rare disease GWAS of eosinophilic granulomatosis with polyangiitis. Collectively, these results highlight the utility of exploiting related traits in both small and large studies. This study introduces a cost-effective strategy called surrogate functional false discovery rates to increase power in genome-wide association studies by leveraging genetic correlations (or pleiotropy) between related traits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信