基于离网稀疏贝叶斯学习的任意阵列快速反卷积波束形成。

IF 1.4 Q3 ACOUSTICS
Jianli Huang, Yu Wang, Zaixiao Gong, Haiqiang Niu, Jun Wang, Haibin Wang
{"title":"基于离网稀疏贝叶斯学习的任意阵列快速反卷积波束形成。","authors":"Jianli Huang, Yu Wang, Zaixiao Gong, Haiqiang Niu, Jun Wang, Haibin Wang","doi":"10.1121/10.0038987","DOIUrl":null,"url":null,"abstract":"<p><p>The deconvolved beamforming (dCv) improves spatial resolution without expanding the array aperture but fails for the shift-variant beam pattern and the real targets, which are not located on the sampling grids. To solve them, this Letter extends the off-grid sparse Bayesian learning (OGSBL) to dCv because the generalized convolutional model considers the beam pattern at each angle in beam domain. OGSBL reduces modeling errors by parameterizing sampled locations in coarse grids. Controlling the number of output beams from conventional beamforming to cover the spatial area of interest could accelerate convergence without sacrificing accuracy. The simulation results confirm the good performance.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 8","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast deconvolved beamforming for arbitrary arrays based on off-grid sparse Bayesian learning.\",\"authors\":\"Jianli Huang, Yu Wang, Zaixiao Gong, Haiqiang Niu, Jun Wang, Haibin Wang\",\"doi\":\"10.1121/10.0038987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The deconvolved beamforming (dCv) improves spatial resolution without expanding the array aperture but fails for the shift-variant beam pattern and the real targets, which are not located on the sampling grids. To solve them, this Letter extends the off-grid sparse Bayesian learning (OGSBL) to dCv because the generalized convolutional model considers the beam pattern at each angle in beam domain. OGSBL reduces modeling errors by parameterizing sampled locations in coarse grids. Controlling the number of output beams from conventional beamforming to cover the spatial area of interest could accelerate convergence without sacrificing accuracy. The simulation results confirm the good performance.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0038987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0038987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

反卷积波束形成(dCv)在不扩大阵列孔径的情况下提高了空间分辨率,但对于偏移波束方向图和真实目标不在采样网格上的情况,dCv的效果不理想。为了解决这些问题,本文将离网稀疏贝叶斯学习(OGSBL)扩展到dCv,因为广义卷积模型考虑了波束域中每个角度的波束模式。OGSBL通过在粗网格中参数化采样位置来减少建模误差。控制传统波束形成的输出波束的数量以覆盖感兴趣的空间区域可以在不牺牲精度的情况下加速收敛。仿真结果证实了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast deconvolved beamforming for arbitrary arrays based on off-grid sparse Bayesian learning.

The deconvolved beamforming (dCv) improves spatial resolution without expanding the array aperture but fails for the shift-variant beam pattern and the real targets, which are not located on the sampling grids. To solve them, this Letter extends the off-grid sparse Bayesian learning (OGSBL) to dCv because the generalized convolutional model considers the beam pattern at each angle in beam domain. OGSBL reduces modeling errors by parameterizing sampled locations in coarse grids. Controlling the number of output beams from conventional beamforming to cover the spatial area of interest could accelerate convergence without sacrificing accuracy. The simulation results confirm the good performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信