[人工智能在仪器步态分析中的应用:挑战和解决方法]。

IF 0.5
Dominik Raab, Falko Heitzer, Christine Kocks, Wojciech Kowalczyk, Andrés Kecskeméthy, Marcus Jäger
{"title":"[人工智能在仪器步态分析中的应用:挑战和解决方法]。","authors":"Dominik Raab, Falko Heitzer, Christine Kocks, Wojciech Kowalczyk, Andrés Kecskeméthy, Marcus Jäger","doi":"10.1007/s00132-025-04712-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) is considered a key technology for alleviating the burden on the healthcare system. For instrumental gait analysis, AI-based evaluations promise a direct and intuitive access to clinically relevant information in orthopaedics and trauma surgery, avoiding the challenging and time-consuming manual evaluations of large amounts of patient data.</p><p><strong>Objective: </strong>The objective of this work is to investigate the specific challenges and limitations of using AI for clinical evaluation of gait analysis data and to propose effective solutions to address these limitations.</p><p><strong>Method: </strong>This work combines a systematic literature review on AI in gait analysis with practical experiences from applications of AI in the authors' own published research projects.</p><p><strong>Results: </strong>Six key challenges have been identified. While AI methods work best when extensive training data, a limited number of influencing factors, and a clearly defined target variable are available, instrumental gait analysis is characterised by opposite conditions (little training data, multiple influencing factors, and fuzzy target variables). To address these contradicting characteristics, a catalogue of possible solution approaches focusing on integrating clinical expert knowledge into AI development and operation is outlined.</p><p><strong>Conclusion: </strong>It is shown that AI offers significant potential for improving the efficiency and quality of gait data exploitation. However, current AI approaches from other fields are only partially transferable to gait analysis due to insufficient fitting. By addressing the specific challenges for AI in gait analysis, it can be expected that specialized procedures and best practices can be developed, which will boost AI assistance in IGA clinical evaluation.</p>","PeriodicalId":74375,"journal":{"name":"Orthopadie (Heidelberg, Germany)","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[AI in instrumental gait analysis : Challenges and solution approaches].\",\"authors\":\"Dominik Raab, Falko Heitzer, Christine Kocks, Wojciech Kowalczyk, Andrés Kecskeméthy, Marcus Jäger\",\"doi\":\"10.1007/s00132-025-04712-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial intelligence (AI) is considered a key technology for alleviating the burden on the healthcare system. For instrumental gait analysis, AI-based evaluations promise a direct and intuitive access to clinically relevant information in orthopaedics and trauma surgery, avoiding the challenging and time-consuming manual evaluations of large amounts of patient data.</p><p><strong>Objective: </strong>The objective of this work is to investigate the specific challenges and limitations of using AI for clinical evaluation of gait analysis data and to propose effective solutions to address these limitations.</p><p><strong>Method: </strong>This work combines a systematic literature review on AI in gait analysis with practical experiences from applications of AI in the authors' own published research projects.</p><p><strong>Results: </strong>Six key challenges have been identified. While AI methods work best when extensive training data, a limited number of influencing factors, and a clearly defined target variable are available, instrumental gait analysis is characterised by opposite conditions (little training data, multiple influencing factors, and fuzzy target variables). To address these contradicting characteristics, a catalogue of possible solution approaches focusing on integrating clinical expert knowledge into AI development and operation is outlined.</p><p><strong>Conclusion: </strong>It is shown that AI offers significant potential for improving the efficiency and quality of gait data exploitation. However, current AI approaches from other fields are only partially transferable to gait analysis due to insufficient fitting. By addressing the specific challenges for AI in gait analysis, it can be expected that specialized procedures and best practices can be developed, which will boost AI assistance in IGA clinical evaluation.</p>\",\"PeriodicalId\":74375,\"journal\":{\"name\":\"Orthopadie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orthopadie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00132-025-04712-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthopadie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00132-025-04712-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:人工智能(AI)被认为是减轻医疗系统负担的关键技术。对于仪器步态分析,基于人工智能的评估有望直接和直观地访问骨科和创伤外科的临床相关信息,避免对大量患者数据进行具有挑战性和耗时的人工评估。目的:本工作的目的是研究使用人工智能进行步态分析数据临床评估的具体挑战和局限性,并提出有效的解决方案来解决这些局限性。方法:本工作结合了人工智能在步态分析中的系统文献综述和作者在自己发表的研究项目中应用人工智能的实践经验。结果:确定了六个关键挑战。人工智能方法在训练数据广泛、影响因素数量有限、目标变量定义明确的情况下效果最好,而仪器步态分析的特点则相反(训练数据少、影响因素多、目标变量模糊)。为了解决这些相互矛盾的特点,本文概述了一系列可能的解决方案,重点是将临床专家知识整合到人工智能的开发和运营中。结论:人工智能在提高步态数据开发的效率和质量方面具有巨大的潜力。然而,由于拟合不足,目前其他领域的人工智能方法只能部分地应用于步态分析。通过解决人工智能在步态分析中的具体挑战,可以预期可以开发专门的程序和最佳实践,这将促进人工智能在IGA临床评估中的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[AI in instrumental gait analysis : Challenges and solution approaches].

Background: Artificial intelligence (AI) is considered a key technology for alleviating the burden on the healthcare system. For instrumental gait analysis, AI-based evaluations promise a direct and intuitive access to clinically relevant information in orthopaedics and trauma surgery, avoiding the challenging and time-consuming manual evaluations of large amounts of patient data.

Objective: The objective of this work is to investigate the specific challenges and limitations of using AI for clinical evaluation of gait analysis data and to propose effective solutions to address these limitations.

Method: This work combines a systematic literature review on AI in gait analysis with practical experiences from applications of AI in the authors' own published research projects.

Results: Six key challenges have been identified. While AI methods work best when extensive training data, a limited number of influencing factors, and a clearly defined target variable are available, instrumental gait analysis is characterised by opposite conditions (little training data, multiple influencing factors, and fuzzy target variables). To address these contradicting characteristics, a catalogue of possible solution approaches focusing on integrating clinical expert knowledge into AI development and operation is outlined.

Conclusion: It is shown that AI offers significant potential for improving the efficiency and quality of gait data exploitation. However, current AI approaches from other fields are only partially transferable to gait analysis due to insufficient fitting. By addressing the specific challenges for AI in gait analysis, it can be expected that specialized procedures and best practices can be developed, which will boost AI assistance in IGA clinical evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信