Liam V Brown, Mark McConnell, Robert Rosler, Leanne Peiser, Brian J Schmidt, Alexander V Ratushny, Eamonn A Gaffney, Mark C Coles
{"title":"应用群体机制模型寻找1个月淋巴瘤患者嵌合抗原受体t细胞动力学的决定因素。","authors":"Liam V Brown, Mark McConnell, Robert Rosler, Leanne Peiser, Brian J Schmidt, Alexander V Ratushny, Eamonn A Gaffney, Mark C Coles","doi":"10.1093/immadv/ltaf001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chimeric antigen receptor (CAR) T-cells have been utilized for the treatment of several malignancies, including Non-Hodgkin lymphomas. A myriad of product- and patient-specific factors determines the extent of patient response, and determining which are most impactful requires analysis of clinical data.</p><p><strong>Methods: </strong>We used population-level ordinary differential equation models to fit clinical flow cytometry and tumour biopsy data from the TRANSCEND-NHL-001 (NCT02631044) study [1]. We analyzed the impact of lymphodepletion, CAR T-cell phenotypes, and other factors on CAR T-cell dynamics for 30 days after infusion.</p><p><strong>Results: </strong>We quantified the relative contribution of antigen-dependent and independent sources of proliferation on CAR T-cell dynamics, finding that both make a large contribution and that antigen-independent proliferation was highly correlated with patient IL-15 and IL-7 blood concentrations. The proportion of CAR T-cells in naïve, memory, or effector cells was found to have a limited impact on CAR T-cell dynamics, compared with lymphodepletion and tumour burden.</p><p><strong>Conclusions: </strong>This study shows how models can be used to link endogenous T-cells, CAR T-cells, and their phenotypes, and may be useful for determining whether a given patient may be responding poorly to treatment, by observing the dynamics of their endogenous T-cells. The framework we developed can be utilized for other CAR T constructs and indications, to test product alterations or biological hypotheses at the population level.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"5 1","pages":"ltaf001"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying population mechanistic modelling to find determinants of chimeric antigen receptor T-cells dynamics in month-one lymphoma patients.\",\"authors\":\"Liam V Brown, Mark McConnell, Robert Rosler, Leanne Peiser, Brian J Schmidt, Alexander V Ratushny, Eamonn A Gaffney, Mark C Coles\",\"doi\":\"10.1093/immadv/ltaf001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chimeric antigen receptor (CAR) T-cells have been utilized for the treatment of several malignancies, including Non-Hodgkin lymphomas. A myriad of product- and patient-specific factors determines the extent of patient response, and determining which are most impactful requires analysis of clinical data.</p><p><strong>Methods: </strong>We used population-level ordinary differential equation models to fit clinical flow cytometry and tumour biopsy data from the TRANSCEND-NHL-001 (NCT02631044) study [1]. We analyzed the impact of lymphodepletion, CAR T-cell phenotypes, and other factors on CAR T-cell dynamics for 30 days after infusion.</p><p><strong>Results: </strong>We quantified the relative contribution of antigen-dependent and independent sources of proliferation on CAR T-cell dynamics, finding that both make a large contribution and that antigen-independent proliferation was highly correlated with patient IL-15 and IL-7 blood concentrations. The proportion of CAR T-cells in naïve, memory, or effector cells was found to have a limited impact on CAR T-cell dynamics, compared with lymphodepletion and tumour burden.</p><p><strong>Conclusions: </strong>This study shows how models can be used to link endogenous T-cells, CAR T-cells, and their phenotypes, and may be useful for determining whether a given patient may be responding poorly to treatment, by observing the dynamics of their endogenous T-cells. The framework we developed can be utilized for other CAR T constructs and indications, to test product alterations or biological hypotheses at the population level.</p>\",\"PeriodicalId\":73353,\"journal\":{\"name\":\"Immunotherapy advances\",\"volume\":\"5 1\",\"pages\":\"ltaf001\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunotherapy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immadv/ltaf001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltaf001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Applying population mechanistic modelling to find determinants of chimeric antigen receptor T-cells dynamics in month-one lymphoma patients.
Background: Chimeric antigen receptor (CAR) T-cells have been utilized for the treatment of several malignancies, including Non-Hodgkin lymphomas. A myriad of product- and patient-specific factors determines the extent of patient response, and determining which are most impactful requires analysis of clinical data.
Methods: We used population-level ordinary differential equation models to fit clinical flow cytometry and tumour biopsy data from the TRANSCEND-NHL-001 (NCT02631044) study [1]. We analyzed the impact of lymphodepletion, CAR T-cell phenotypes, and other factors on CAR T-cell dynamics for 30 days after infusion.
Results: We quantified the relative contribution of antigen-dependent and independent sources of proliferation on CAR T-cell dynamics, finding that both make a large contribution and that antigen-independent proliferation was highly correlated with patient IL-15 and IL-7 blood concentrations. The proportion of CAR T-cells in naïve, memory, or effector cells was found to have a limited impact on CAR T-cell dynamics, compared with lymphodepletion and tumour burden.
Conclusions: This study shows how models can be used to link endogenous T-cells, CAR T-cells, and their phenotypes, and may be useful for determining whether a given patient may be responding poorly to treatment, by observing the dynamics of their endogenous T-cells. The framework we developed can be utilized for other CAR T constructs and indications, to test product alterations or biological hypotheses at the population level.